• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on threshold phenomena and stability of solitons in nonlinear dispersive equations

Research Project

Project/Area Number 18KK0386
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionOsaka University

Principal Investigator

Masaki Satoshi  大阪大学, 基礎工学研究科, 准教授 (20580492)

Project Period (FY) 2019 – 2021
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥12,480,000 (Direct Cost: ¥9,600,000、Indirect Cost: ¥2,880,000)
Keywords非線形分散型方程式 / 非線形シュレディンガー方程式 / 非線型クラインゴルドン方程式 / 解の時間大域ダイナミクス / 定在波解の安定性 / 長距離散乱 / 修正散乱 / 非線形方程式系の分類 / 分散型方程式 / 非線形散乱問題 / 定在波解の安定性解析 / 解の大域ダイナミクス / 励起状態解 / ソリトン解 / 定在波解 / 遷移現象 / 散乱理論 / 可積分系 / 散乱問題 / 質量劣臨界
Outline of Final Research Achievements

We study the large-time behavior of solutions to the nonlinear dispersive equations.
The biggest contribution is the classification of the global behavior of solutions to the nonlinear Schrodinger equation with linear potential below the first excited energy. As preliminary studies, we consider the delta potential case and obtain the asymptotic stability of solitons. By using the knowledge obtained in this study, the above result is obtained.
We also obtained results on modified scattering. We had much more progress than expected. We establish the classification result for cubic dispersive systems in one space dimension. This enables us to a systematic approach to understand the whole picture of the behavior for systems.

Academic Significance and Societal Importance of the Research Achievements

非線形分散型方程式の解の時間大域ダイナミクスの研究において、現在は不安定ソリトンが一つだけ存在する場合が多く扱われているが、本研究では安定ソリトンが存在する場合を扱うことができた。物理的な背景を考える
と、安定ソリトンが存在する状況を考察する方が自然である。本研究でこの状況における解析の基本的な結果が得られた。
長距離散乱理論においては、非多項式型の非線形項の解析を発展させることに成功した。また、この研究で得られた3次方程式系の分類によって、系統的に新しい種類の挙動を発見できた。従来の3次方程式系の分類とは少し異なる視点を与えており、今後の他の分散型方程式系の研究にも応用が可能であると期待される。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (14 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Remarks (2 results)

  • [Int'l Joint Research] University of California, Los Angeles(米国)2019

    • Year and Date
      2019-09-08
    • Related Report
      2021 Annual Research Report
  • [Journal Article] Asymptotic behavior in time of solution to system of cubic nonlinear Schr\"odinger equations in one space dimension2022

    • Author(s)
      Satoshi Masaki, Jun-ichi Segata, Kota Uriya
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A sharp scattering threshold level for mass-subcritical nonlinear Schrodinger system2021

    • Author(s)
      Hamano Masaru、Masaki Satoshi
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 41 Issue: 3 Pages: 1415-1447

    • DOI

      10.3934/dcds.2020323

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A sharp scattering threshold level for mass-subcritical nonlinear Schrodinger system2021

    • Author(s)
      Masaru Hamano, Satoshi Masaki
    • Journal Title

      Discrete Contin. Dyn. Syst.

      Volume: 41 Pages: 1415-1447

    • Related Report
      2020 Research-status Report
  • [Journal Article] Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions.2020

    • Author(s)
      Satoshi Masaki, Jun-ichi Segata, Kota Uriya
    • Journal Title

      J. Math. Pures Appl.

      Volume: 139 Pages: 177-203

    • Related Report
      2020 Research-status Report
  • [Journal Article] Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential2020

    • Author(s)
      Satoshi Masaki, Jason Murphy, Jun-ichi Segata
    • Journal Title

      Anal. PDE

      Volume: 13 Pages: 1099-1123

    • Related Report
      2020 Research-status Report
  • [Journal Article] Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type2020

    • Author(s)
      Satoshi Masaki and Koki Sugiyama
    • Journal Title

      Differential and Integral Equations

      Volume: 33 Pages: 247-256

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 3 次非線形方程式系の分類について2022

    • Author(s)
      眞崎聡、瀬片純市、瓜屋航太
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ある非線形クラインゴルドン方程式系の解の漸近挙動について2022

    • Author(s)
      眞崎聡、瀬片純市、瓜屋航太
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 非線形項Klein-Gordon 方程式系における 解の時間減衰の最良レートについて2020

    • Author(s)
      眞崎聡
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] LONG RANGE SCATTERING FOR NONLINEAR DISPERSIVE EQUATIONS WITH CRITICAL NON-POLYNOMIAL NONLINEARITY2020

    • Author(s)
      Satoshi Masaki
    • Organizer
      Harmonic Analysis and Dispersive PDEs: Problems and Progress
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Modified scattering for complex-valued solutions to Klein-Gordon equation with a gauge invariant quadratic nonlinearity2019

    • Author(s)
      眞崎聡
    • Organizer
      RIMS研究集会「偏微分方程式の臨界現象と正則性理論及び漸近解析」
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] X. Cheng, Z. Guo, S. Masaki, "Scattering..."

    • URL

      https://arxiv.org/abs/2003.01468

    • Related Report
      2019 Research-status Report
  • [Remarks] Masaru Hamano, Satoshi Masaki, "A sharp..."

    • URL

      https://arxiv.org/abs/1912.12584

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-02-06   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi