• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the Solomon-Terao complexes by using D-module theory

Research Project

Project/Area Number 18KK0389
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionRikkyo University (2023)
Kyushu University (2018-2022)

Principal Investigator

ABE TAKURO  立教大学, 理学部, 教授 (50435971)

Project Period (FY) 2019 – 2023
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥14,690,000 (Direct Cost: ¥11,300,000、Indirect Cost: ¥3,390,000)
Keywords超平面配置 / 対数的ベクトル場 / 自由配置 / Solomon-寺尾理論 / Liouville複体 / 完全交差性 / Cohen-Macaulay性 / Ziegler予想 / Solomon-寺尾多項式 / B列 / Solomon-寺尾代数 / D加群 / 対数的イデアル / Bernstein-佐藤多項式 / 対数的比較定理 / 対数的微分加群 / 自由配置とSPOG配置 / 多重配置 / 双対性 / Solomon-寺尾複体 / SPOG配置 / オイラー列 / Master function / 特異点論 / 加除定理
Outline of Final Research Achievements

In this research, we studied the Solomon-Terao polynomial theory, which attracts many interests recently, from the viewpoint of the D-modules, in particular, that of so called the Liouville complex theory due to Uli Walther. On this approach, a joint work with Castro and Narvaez in Sevilla, we observed that the freenss of arrangements coincides with the Cohen-Macaulayness of the Liouville algebra, and a specializaion of the Liouville complex coincides with the Solomon-Terao complex. This shows that in a very high possibility, the Liouville complex theory could be regarded as a two-variable version of the Solomon-Terao complex theory. This enlarges the research of this area drastically. Also, in a joint work with Graham Denahm in Western university, we proved the Ziegler's conjecture on the logarithnmic differential forms. This was conjectured about 30 years before, and we investigated a theory to show it.

Academic Significance and Societal Importance of the Research Achievements

本研究では、直線の有限集合の一般化である超平面配置の代数を幾何・表現論の視点から解析・一般化することを目指した。まずSolomon-寺尾理論について説明する。超平面配置の代数は超平面に接するベクトル場、流れのようなものの集合である対数的ベクトル場の研究である。この対数的ベクトル場と組み合わせ論及び幾何と繋ぐものがSolomon-寺尾理論であった。これは代数的な定義を持っているが、これに対して近年Walther氏により導入されたD加群的視点を持つLiouville複体理論を融合することで、Solomon-寺尾理論に新たな視点を導入することが、本研究では達成された。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (21 results)

All 2024 2023 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (6 results) (of which Int'l Joint Research: 5 results,  Invited: 4 results) Remarks (7 results) Funded Workshop (3 results)

  • [Int'l Joint Research] Ruhr-Universitty Bochum(ドイツ)2024

    • Year and Date
      2024-01-15
    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of West Ontario(カナダ)2023

    • Year and Date
      2023-06-17
    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] セビージャ大学(スペイン)2019

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Addition-deletion theorems for the Solomon-Terao polynomials and B-sequences of hyperplane arrangements2024

    • Author(s)
      Abe Takuro
    • Journal Title

      Mathematische Zeitschrift

      Volume: 306 Issue: 2

    • DOI

      10.1007/s00209-023-03426-z

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Addition-deletion results for the minimal degree of logarithmic derivations of hyperplane arrangements and maximal Tjurina line arrangements2020

    • Author(s)
      Abe Takuro, Dimca Alexandru, Sticlaru Gabriel
    • Journal Title

      Journal of Algebraic Combinatorics

      Volume: - Issue: 3 Pages: 739-766

    • DOI

      10.1007/s10801-020-00986-9

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Multi-Euler derivations2024

    • Author(s)
      Takuro Abe
    • Organizer
      OBERSEMINAR "ARRANGEMENTS AND SYMMETRIES", Ruhr University Bochum
    • Related Report
      2023 Annual Research Report
  • [Presentation] B-sequences of the logarithmic modules2023

    • Author(s)
      Takuro Abe
    • Organizer
      Combinatorics, geometry and commutative algebra of hyperplane arrangements
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] B-sequences of logarithmic modules of hyperplane arrangements2023

    • Author(s)
      Takuro Abe
    • Organizer
      Characteristic Polynomials of Hyperplane Arrangements and Ehrhart Polynomials of Convex Polytopes
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Projective dimension of logarithmic modules of hyperplane arrangements2021

    • Author(s)
      Takuro Abe
    • Organizer
      RIMS x OIST Jointly-funded Workshop: "Interactions of New Trends in Algebraic Geometry and Singularities"
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Solomon-Terao algebra of hyperplane arrangements and singularities2019

    • Author(s)
      Takuro Abe
    • Organizer
      Special Session on Geometry and Topology of Singularities
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Free arrangements, combinatorics and geometry2019

    • Author(s)
      Takuro Abe
    • Organizer
      Hyperplane Arrangements and Japanese-Australian Workshop on Real and Complex Singularities
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] TAKURO ABE

    • URL

      https://sites.google.com/site/takuroabemath/a-bu-ta-lang

    • Related Report
      2023 Annual Research Report
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/7000008882

    • Related Report
      2023 Annual Research Report
  • [Remarks] Researchmap

    • URL

      https://researchmap.jp/7000008882

    • Related Report
      2022 Research-status Report 2021 Research-status Report 2020 Research-status Report 2019 Research-status Report
  • [Remarks] Takuro Abe

    • URL

      https://sites.google.com/site/takuroabemath/a-bu-ta-lang

    • Related Report
      2022 Research-status Report
  • [Remarks] 阿部拓郎

    • URL

      https://sites.google.com/site/takuroabemath/a-bu-ta-lang

    • Related Report
      2021 Research-status Report 2020 Research-status Report
  • [Remarks] 阿部拓郎

    • URL

      https://sites.google.com/site/takuroabemath/a-bu-ta-lang?authuser=0

    • Related Report
      2019 Research-status Report
  • [Remarks] 九州大学-研究者情報

    • URL

      https://hyoka.ofc.kyushu-u.ac.jp/search/details/K006207/index.html

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] Hyperplane Aarrangements 20232023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] Combinatorics, geometry and commutative algebra of hyperplane arrangements2023

    • Related Report
      2022 Research-status Report
  • [Funded Workshop] D-modules and hyperplane arrangements2023

    • Related Report
      2022 Research-status Report

URL: 

Published: 2019-02-06   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi