Project/Area Number |
18KT0066
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Complex Systems Disease Theory
|
Research Institution | The University of Tokyo |
Principal Investigator |
NAKA Izumi 東京大学, 大学院理学系研究科(理学部), 特任助教 (10723778)
|
Co-Investigator(Kenkyū-buntansha) |
西田 奈央 国立研究開発法人国立国際医療研究センター, 肝炎・免疫研究センター, 客員研究員 (50456109)
大橋 順 東京大学, 大学院理学系研究科(理学部), 教授 (80301141)
|
Project Period (FY) |
2018-07-18 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | デング熱 / GWAS / 予測モデル / デング出血熱 / SNP / 重症化予測 |
Outline of Final Research Achievements |
Dengue fever is a febrile illness caused by infection with the dengue virus, which is transmitted by mosquitoes. It has been considered that the interaction between the host's genetic factors and the virus plays a role in the severity of the disease, as only a subset of infected individuals develop severe symptoms. In this study, we conducted a genome-wide SNP association analysis in Thai patients with dengue fever to identify genetic variants associated with the risk of dengue shock syndrome, a severe complication. Additionally, we developed prediction models (machine learning algorithms) for disease severity, incorporating variables such as gender, age, and SNPs.
|
Academic Significance and Societal Importance of the Research Achievements |
デング熱は「なぜ一部の感染者のみが重症化するのか?」についてはよくわかっていない。本研究により、最も重症なデングショック症候群のリスクと一義的に関与している多型が同定された。また、患者の性別、年齢、重症化リスクアリルの情報から、重症化予測モデルを構築した。このことから、重症化が予想される場合には、早期に適切な治療を行う基盤情報の提供を与えられる可能性が示唆された。
|