Project/Area Number |
19360092
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Japan Aerospace Exploration Agency |
Principal Investigator |
TSUBOI Nobuyuki Japan Aerospace Exploration Agency, 工学研究院, 准教授 (40342620)
|
Co-Investigator(Kenkyū-buntansha) |
KOSHI Mitsuo 東京大学, 工学系研究科, 特任教授 (20133085)
HAYASHI A.koichi 青山学院大学, 理工学部, 教授 (60156437)
SHIMIZU Taro 独立行政法人宇宙航空研究開発機構, 情報・計算工学センター, 研究員 (00446600)
SHIMIZU Kazuya 東京大学, 工学系研究科, 特任助教 (80373447)
TSUDA Shinichi 独立行政法人宇宙航空研究開発機構, 情報・計算工学センター, 研究員 (00466244)
YAMADA Eisuke 青山学院大学, 理工学部, 助教 (60453487)
TOKUMASU Takashi 東北大学, 流体科学研究所, 准教授 (10312662)
松本 洋一郎 東京大学, 工学系研究科, 教授 (60111473)
|
Co-Investigator(Renkei-kenkyūsha) |
MATSUMOTO Yoichiro 東京大学, 工学系研究科, 教授 (60111473)
TAKAGI Shu 独立行政法人理化学研究所, 臓器全身スケール研究開発チーム, チームリーダー (30272371)
YAMANISHI Nobuhiro 独立行政法人宇宙航空研究開発機構, 情報・計算工学センター, 研究員 (70450715)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥19,630,000 (Direct Cost: ¥15,100,000、Indirect Cost: ¥4,530,000)
Fiscal Year 2009: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2008: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2007: ¥9,620,000 (Direct Cost: ¥7,400,000、Indirect Cost: ¥2,220,000)
|
Keywords | 反応流 / 超臨界流体 / マルチスケール / 燃焼 / 熱物性 |
Research Abstract |
The multi-scale method for the hydrogen/oxygen supercritical combustion flow under high pressure is applied to understand the thermo-physical phenomena. The present study is focused on (1) the construction of thermo-physical properties and equation of state, (2) the modification of the chemical reaction model, and (3) the improvement of the compressible Navier-Stokes solver by using the preconditioning method. For the first task, the temperature and density saturation curve for the molecular dynamics simulations were compared with those for NIST data to show the agreement under the small rotational quantum effects. For the second task, the chemical reaction model was improved to show that the ignition delay times and the laminar flame velocities for the present model agreed well with the experimental data. For the third task, the compressible flow solver with the preconditioning method showed the ability to solve such the low speed flow around a cylinder and an aerofoil.
|