Maintaining diversity of population using partial solutions in the probabilistic model-building genetic algorithms
Project/Area Number |
19500199
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Sensitivity informatics/Soft computing
|
Research Institution | Hannan University |
Principal Investigator |
SUTSUI Shigeyoshi Hannan University, 経営情報学部, 教授 (90188590)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2009: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2008: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 遺伝アルゴリズム / 確率モデル遺伝的アルゴリズム / 進化的計算 / EDA / 多様性維持 / 部分解 / EHBSA / アントコロニー最適化アルゴリズム / 並列計算 / 確率モデルGA / 分散型計算 / 分布推定アルゴリズム / アントコロニー最適化 / 初期収束 / 巡回セールスマン問題 / 2次割当て問題 / ローカルサーチ / フェロモン濃度分布 |
Research Abstract |
Estimation of distribution algorithms (EDAs) or probabilistic model-building genetic algorithms (PMBGAs) are promising research directions of the evolutionary computation. We studied the effectiveness of using partial solutions to maintain diversity of a population in EDAs. In this approach, new solutions are created by combining partial solutions which exist in the current population, and partial solutions newly generated by sampling a probabilistic model. In this study, the effectiveness was studied using combinatorial optimization problems.
|
Report
(4 results)
Research Products
(45 results)