Study of perfect complexes over algebras and derived equivalences
Project/Area Number |
19540013
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Tokyo Gakugei University |
Principal Investigator |
MIAYCHI Jun-ichi Tokyo Gakugei University, 教育学部, 教授 (50209920)
|
Co-Investigator(Kenkyū-buntansha) |
蔵野 和彦 明治大学, 理工学部, 教授 (90205188)
|
Co-Investigator(Renkei-kenkyūsha) |
KURANO Kazuhiko 明治大学, 理工学部, 教授 (90205188)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2009: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2008: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 環論 / 導来圏 / 三角圏 / ホモトピー圏 / 完全鎖複体 / ネーター環 / コーエン・マコーレー加群 / 安定圏 / graded ring / 多様体 / Recollement / Grothendieck群 / コンパクト対象 / 完全環 / フロベニウス多元環 / 加群圏 / 森田同値 / 安定同値 |
Research Abstract |
We show that any module is compact if and only if finitely generated in the stable module category over a perfect ring, and that there is results which is similar to ones in Morita theory. We introduce the new structure for n subcategories of a triangulated category that there are consecutive and recursive stable t-structures, and that this notion is equivalent to the one of consecutive and recursive recollements of a triangulated category.
|
Report
(4 results)
Research Products
(10 results)