Orbifold cohomology and generalization of the McKay correspondence
Project/Area Number |
19540022
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Nagoya University |
Principal Investigator |
ITO Yukari Nagoya University, 多元数理科学研究科, 准教授 (70285089)
|
Co-Investigator(Kenkyū-buntansha) |
GUEST Martin 首都大学東京, 大学院・理工学研究科, 教授 (10295470)
MAENO Toshiaki 京都大学, 大学院・工学研究科, 講師 (60291423)
IRITANI Hiroshi 京都大学, 大学院・理学研究科, 准教授 (20448400)
|
Co-Investigator(Renkei-kenkyūsha) |
SATO Fumitoshi 香川高等専門学校, 講師 (20548309)
|
Project Period (FY) |
2007 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2007: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | トポロジー / マッカイ対応 / モジュライ空間 / 代数学 / 商特異点 / 幾何学 / 数理物理 / 特異点解消 / 特異点 / 有限群 |
Research Abstract |
We studied on the ring structure and several properties of Orbifold cohomology and constructed crepant resolutions of Gorenstein singularities as moduli spaces of the quivers which are given by the representations of finite groups to see the generalized McKay correspondence.
|
Report
(6 results)
Research Products
(40 results)