Higher dimensional category and its applications
Project/Area Number |
19540075
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kyoto University |
Principal Investigator |
NISHIDA Goro Kyoto University, 情報学研究科, 研究員 (00027377)
|
Co-Investigator(Kenkyū-buntansha) |
KONO Akira 京都大学, 理学研究科, 教授 (00093237)
FUKAYA Kinji 京都大学, 理学研究科, 教授 (30165261)
NAKAJIMA Hiraku 京都大学, 理学研究科, 教授 (00201666)
MORIWAKI Atsushi 京都大学, 理学研究科, 教授 (70191062)
YOSHIDA Hiroyuki 京都大学, 理学研究科, 教授 (40108973)
WAKANO Isao 京都大学, 情報学研究科, 講師 (00263509)
|
Co-Investigator(Renkei-kenkyūsha) |
MINAMI Norihiko 名古屋工業大学, 工学研究科, 教授 (80166090)
TORII Takeshi 岡山大学, 自然科学研究科, 准教授 (30341407)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2009: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2008: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | カテゴリー / ホモトピー論 / 形式群 / 楕円コホモロジー / 表現論 / K-理論 / 指標 / 対称群 / 単体集合 / Morava K-理論 / 無限ループ空間 / 楕円コホモロジー論 |
Research Abstract |
It is shown that a based mapping space from a finite Postnikov space to a finite complex is contractible. This implies that either homology groups or homotopy groups is not bounded up to certain dimension. In particular the Serre conjecture, homotopy groups of a finite complex with torsion homology is not bounded, is proved.
|
Report
(4 results)
Research Products
(21 results)