Boundary problem of Markov processes and point processes
Project/Area Number |
19540125
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
会田 茂樹 大阪大学, 大学院・基礎工学研究科, 教授 (90222455)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2009: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2008: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2007: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 確率論 / マルコフ過程 / 点過程 / 対称マルコフ過程 / 反射ディリクレ形式 / 1次元拡散過程 / 多次元反射壁ブラウン運動 / 時間変更 / 無限錘領域 / 対称拡大 / 2点拡張 / 生成作用素 / flux / 付加条件 / レゾルベント分解 / 1点拡張 / 一意拡張 / 境界問題 / ポアッソン点過程 / フェラー測度 / レゾルベント / フラックス / 部分過程 / 飛躍測度 |
Research Abstract |
Given a Markov process X with a weak dual process and countable boundary points, all possible Markovian extensions of X beyond its life time preserving the weak duality are characterized in terms of intrinsic quantities for X called Feller measures and independent parameters of killing and jumps on the boundary. Such an extension of X is constructed by repeating one point extensions by means of Poisson point processes of excursions.
|
Report
(4 results)
Research Products
(25 results)