• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Wellposedness of differential equations whose solutions depend Lipschitz continuously on their initial data

Research Project

Project/Area Number 19540177
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionShizuoka University

Principal Investigator

TANAKA Naoki  Shizuoka University, 理学部, 教授 (00207119)

Co-Investigator(Kenkyū-buntansha) TAMURA Hideo  岡山大学, 大学院・自然科学研究科, 教授 (30022734)
ASAKURA Fumioki  大阪電気通信大学, 金融経済学部, 教授 (20140238)
KUMURA Hironori  静岡大学, 理学部, 准教授 (30283336)
MATSUMOTO Toshitaka  広島大学, 大学院・理学研究科, 助教 (20229561)
Project Period (FY) 2007 – 2009
Project Status Completed (Fiscal Year 2009)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2009: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2008: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2007: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordssemigroup of Lipschitz operators / semilinear equation / quasilinear equation / metric-like functional / analytic semigroup / stability condition / subtangential condition / integral solution / fractional power / semilinear evolution equation / mild solution / parabolic type / Ginzburg-Landau equation / stabilitiy condition / semigroup of Lipshitz oprators / Carrier equation / acoustic boundary condition / qusilinear equation
Research Abstract

本研究は,解が初期値にリプシッツ連続的に依存する微分方程式系に対する適切性定理の確立を課題とし,それをリプシッツ作用素半群の生成の問題に翻訳して考察した。成果は,リプシッツ作用素半群が抽象的コーシー問題の軟解を与えるための必要十分条件を与えたこと,及び,正則半群の非線形摂動として表されるリプシッツ作用素半群の特徴づけを与えたことである。特色は,解の初期値に関する連続的依存性を保障する準消散条件を提案するために,距離に似た非負なリプシッツ連続汎関数を用いた点である。

Report

(4 results)
  • 2009 Annual Research Report   Final Research Report ( PDF )
  • 2008 Annual Research Report
  • 2007 Annual Research Report
  • Research Products

    (19 results)

All 2010 2009 2008 2007

All Journal Article (10 results) (of which Peer Reviewed: 10 results) Presentation (9 results)

  • [Journal Article] A Lipschitz semigroup approach to two-dimensional Navier-Stokes equations2010

    • Author(s)
      Y. Kobayashi, N. Tanaka
    • Journal Title

      Nonlinear Anal. TMA 72

      Pages: 1820-1828

    • NAID

      120001820434

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Well-posedness for the complex Ginzburg-Landau equations2010

    • Author(s)
      T. Matsumoto, N. Tanaka
    • Journal Title

      GAKUTO Internat. Ser. Math. Sci. Appl 32

      Pages: 427-440

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] A Lipschitz semigroup approach to two-dimensional Navier-Stokes equations2010

    • Author(s)
      Yoshikazu Kobayashi
    • Journal Title

      Nonlinear Anal.TMA 72

      Pages: 1820-1828

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Well-posedness for the complex Ginzburg-Landau equations2010

    • Author(s)
      Toshitaka Matsumoto
    • Journal Title

      GAKUTO Internat.Ser.Math.Sci.Appl. 32

      Pages: 427-440

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Lipschitz semigroup approach to drift-diffusion systems2009

    • Author(s)
      T. Matsumoto, N. Tanaka
    • Journal Title

      RIMS Kokyuroku Bessatsu B15

      Pages: 147-177

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Lipschitz semigroup approach to drift-diffusion systems2009

    • Author(s)
      Toshitaka Matsumoto
    • Journal Title

      RIMS Kokyuroku Bessatsu B15

      Pages: 147-177

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An application of semigroups of locally Lipschitz operators to Carrier equations with acoustic boundary conditions2008

    • Author(s)
      Y. Kobayashi, N. Tanaka
    • Journal Title

      J. Math. Anal. Appl 338

      Pages: 852-872

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type2008

    • Author(s)
      T. Matsumoto, N. Tanaka
    • Journal Title

      Nonlinear Anal. TMA 69

      Pages: 4025-4054

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type2008

    • Author(s)
      Matsumoto, Toshitaka
    • Journal Title

      Nonlinear Analysi 69

      Pages: 4025-4054

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An application of semigroups of locally Lipschitz operators to Carrier equations with acoustic boundary conditions2008

    • Author(s)
      Kobayashi, Yoshikazu
    • Journal Title

      J.Math.Anal.Appl. 338

      Pages: 852-872

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Presentation] 複素Ginzburg-Landau方程式のLp適切性2009

    • Author(s)
      松本敏隆
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      大阪大学
    • Year and Date
      2009-09-25
    • Related Report
      2009 Final Research Report
  • [Presentation] 複素 Ginzburg-Landau 方程式のL^p適切性2009

    • Author(s)
      松本敏隆
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      大阪大学
    • Year and Date
      2009-09-25
    • Related Report
      2009 Annual Research Report
  • [Presentation] Drift-diffusion方程式へのリプシッツ作用素半群的接近法2008

    • Author(s)
      松本敏隆
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      東京工業大学
    • Year and Date
      2008-09-27
    • Related Report
      2009 Final Research Report
  • [Presentation] Drift-Diffusion方程式へのリプシッツ作用素半群的接近法2008

    • Author(s)
      松本敏隆
    • Organizer
      日本数学会2008年度秋季総合分科会
    • Place of Presentation
      東京工業大学
    • Year and Date
      2008-09-27
    • Related Report
      2008 Annual Research Report
  • [Presentation] リプシッツ作用素半群入門(解が初期値にリプシッツ連続的に依存する微分方程式系への応用を目指して)2008

    • Author(s)
      田中直樹
    • Organizer
      第30回発展方程式若手セミナー
    • Place of Presentation
      山梨
    • Year and Date
      2008-09-02
    • Related Report
      2009 Final Research Report
  • [Presentation] リプシッツ作用素半群入門-解か初期値にリプシッツ連続的に依存する微分方程式系への応用を目指して-2008

    • Author(s)
      田中直樹
    • Organizer
      第30回発展方程式若手セミナー
    • Place of Presentation
      春日居びゅーほてる(山梨県笛吹市)
    • Year and Date
      2008-09-02
    • Related Report
      2008 Annual Research Report
  • [Presentation] Local semigroup of locally Lipschitz operatorsの生成定理2008

    • Author(s)
      田中直樹
    • Organizer
      日本数学会年会
    • Place of Presentation
      近畿大学
    • Year and Date
      2008-03-25
    • Related Report
      2009 Final Research Report
  • [Presentation] 解が初期値にリプシッツ連続的に依存する微分方程式系に対する適切性定理2007

    • Author(s)
      田中直樹
    • Organizer
      第46回実函数論・函数解析学合同シンポジウム
    • Place of Presentation
      九州大学
    • Year and Date
      2007-08-07
    • Related Report
      2009 Final Research Report
  • [Presentation] 解が初期値にリプシッツ連続的に依存する微分方程式系に関する適切性定理2007

    • Author(s)
      田中, 直樹
    • Organizer
      実函数論・函数解析学合同シンポジウム
    • Place of Presentation
      九州大学
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2007-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi