Computing pairings on curves and their application to cryptography
Project/Area Number |
19700005
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Fundamental theory of informatics
|
Research Institution | University of Tsukuba |
Principal Investigator |
KANAYAMA Naoki University of Tsukuba, 大学院・システム情報工学研究科, 研究員 (70339696)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥3,700,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥600,000)
Fiscal Year 2009: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2008: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | (超)楕円曲線 / ペアリング関数 / IDベース暗号 / Tateペアリング / ペアリング逆問題 / Millerアルゴリズム / 楕円曲線 / ペアリング / ペアリング暗号 / Millerのアルゴリズム / Duursma-桜井曲線 / Optimalペアリング / 有限体 / 種数 / 拡大体 / ηペアリング / superoptimalペアリング / 小標数 / supersingular / 群位数公式 |
Research Abstract |
We researched on pairings over (hyper-)elliptic curves. Pairings are used ID-based cryptosystems. However, pairing computation needs large costs comparing to other cryptosystems. In this research, we gave some efficient pairing computation method. Furthermore, we gave a consideration on pairing inversion problem.
|
Report
(4 results)
Research Products
(12 results)