• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deligne-Lusztig 多様体とFargues-Fontaine 曲線

Research Project

Project/Area Number 19F19022
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section外国
Review Section Basic Section 11010:Algebra-related
Research InstitutionThe University of Tokyo

Principal Investigator

今井 直毅  東京大学, 大学院数理科学研究科, 准教授 (90597775)

Co-Investigator(Kenkyū-buntansha) GAISIN ILDAR  東京大学, 数理(科)学研究科(研究院), 外国人特別研究員
Project Period (FY) 2019-04-25 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2020: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2019: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsCohomology
Outline of Research at the Start

Fargues-Fontaine 曲線上において,ベクトル束とその付加構造のモジュライを考えることによって Deligne-Lusztig 多様体の類似を構成する.構成した空間やそのある意味でのコンパクト化を幾何的に調べ,そのコホモロジーに局所保型誘導を幾何学的に実現する.これによって,有限体上の代数群に対する Deligne-Lusztig 理論の局所体類似が構成される.

Outline of Annual Research Achievements

During the period April 2020-March 2021, together with my collegue Teruhisa Koshikawa, we developed a relative version of A_Inf-cohomology. First some background: Given a proper smooth formal scheme X over the ring of integers, Bhatt-Morrow-Scholze constructed a complex of A_Inf-modules which specializes to other p-adic cohomology theories (their work published in 2018). In recent work of Koshikawa and myself we generalize this construction to the relative situation. In
short, this means that for a smooth morphism of p-adic formal schemes f: X -> Y, we construct a complex (using the decalage functor) living on the pro-etale site of the adic generic fiber of Y, which interpolates the de Rham complex. Although, our methods are similar to that of Bhatt-Morrow-Scholze, there is the appearance of a new object in this setup: fibered product of topoi. One difference in this setup (compared to BMS) is that results are only possible up to almost ambiguity (due to almost non-zero elements in higher cohomology groups for the pro-etale topology). One consequence of our work is the existence of a relative Hodge-Tate spectral sequence which generalizes the ones constructed by Caraiani-Scholze (dvr setting) et Abbes-Gros (scheme setting). Moreover we compare our relative A_Inf-cohomology with the prismatic/q-crystalline theory developed by Bhatt-Scholze.

Research Progress Status

令和2年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和2年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (4 results)

All 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] Constructibility and Reflexivity in Non-Archimedean geometry2019

    • Author(s)
      Ildar Gaisin, John Welliaveetil
    • Journal Title

      International Mathematics Research Notices

      Volume: NA Issue: 5 Pages: 3438-3511

    • DOI

      10.1093/imrn/rnz247

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Relative A_inf-cohomology2020

    • Author(s)
      Ildar Gaisin
    • Organizer
      RIMS Workshop, Algebraic Number Theory & Related topics
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] The Fargues-Fontaine curve2020

    • Author(s)
      Ildar Gaisin
    • Organizer
      Equivariant Stable Homotopy Theory and p-adic Hodge Theory
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Fargues' conjecture in GL_2-case2019

    • Author(s)
      Ildar Gaisin
    • Organizer
      Perfectoid Spaces
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-05-29   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi