Project/Area Number |
19F19028
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Review Section |
Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
NORI FRANCO 国立研究開発法人理化学研究所, 開拓研究本部, 主任研究員 (50415262)
|
Co-Investigator(Kenkyū-buntansha) |
CHEN YEHONG 国立研究開発法人理化学研究所, 開拓研究本部, 外国人特別研究員
|
Project Period (FY) |
2019-10-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2021: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 2020: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2019: ¥700,000 (Direct Cost: ¥700,000)
|
Keywords | quantum computing / cat-state qubits / fault-tolerant computing / optical dark mode / quantum electrodynamics / ultrastrong coupling / quantum control methods / Ultrastrong systems / Shortcuts to / adiabaticity / Rapid dynamical / evolution |
Outline of Research at the Start |
(1)Developingaccelerated dynamics for open systems. For an open quantum system modeled by the Lindblad-Markovian master equation, we plan to develop two ways to accelerate the dynamics: an analytical one and a nonanalytic one. (2)Applyingaccelerated dynamics tooptomechanical systems. We plan to study howto develop accelerated dynamics for optomechanical cavity systemswithmembranes. (3)Applyingaccelerated dynamics tospin chain systems. We plan to accelerate some quantum adiabatic processes based on spin chain systems.
|
Outline of Annual Research Achievements |
Since Apr. 2021, we have focused on the following topics: 1. Using cat-state qubits for geometric quantum computing. We have investigated the possibility of using photonic cat-state qubits for implementing single- and multi-qubit geometric gates. Our results offer a realistic and hardware-efficient method for both single- and multi-qubit fault-tolerant quantum computation. 2. We have theoretically shown that employing counter-rotating effects (using two different protocols) can effectively improve both the speed and fidelity of geometric quantum computation. Such an ultrafast evolution (nanoseconds, even picoseconds) significantly reduces the influence of decoherence, making it possible to reach the threshold of fault-tolerant computing. 3.We have explored an efficient protocol to sense single atoms in a cavity field using a nonlinear classical drive. The proposed protocol possesses many advantages, such as controllable squeezing strength and squeezed-cavity-mode frequency, and exponential enhancement of atom-cavity coupling strength. 4. We have theoretically proposed to realize a genuine tripartite optomechanical entanglement via the control of an optical dark mode. than that in the DMU regime. The study can enable constructing large-scale entanglement networks with the dark-mode-immunity and noise-tolerance, and opens up a range of exciting opportunities for quantum information processing and quantum metrology protected against dark modes.
|
Research Progress Status |
令和3年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和3年度が最終年度であるため、記入しない。
|