• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

随伴形式とspherical多様体の超曲面のトレリ型問題

Research Project

Project/Area Number 19F19780
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section外国
Review Section Basic Section 11010:Algebra-related
Research InstitutionThe University of Tokyo

Principal Investigator

小木曽 啓示  東京大学, 大学院数理科学研究科, 教授 (40224133)

Co-Investigator(Kenkyū-buntansha) RIZZI LUCA  東京大学, 数理(科)学研究科(研究院), 外国人特別研究員
Project Period (FY) 2019-11-08 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2021: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2020: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2019: ¥600,000 (Direct Cost: ¥600,000)
KeywordsTorelli problem / semi-stable fibration / local system / Fujita decomposition / 無限小Torelli問題 / hypersurfaces / Massey product / 有理等質多様体
Outline of Research at the Start

n次元複素射影多様体がそのホッジ構造から復元できるかを問う問題はトレリ問題と呼ばれ、代数幾何学の一つの中心的研究テーマである。これは、言い換えれば、n次元複素射影多様体にそのホッジ構造を対応させる写像--周期写像と呼ばれる--が単射かという問題である。これから派生した問題として、周期写像が生成的に単射であるかを問う問題(生成トレリ問題)や周期写像の微分が単射であるかを問う問題(無限小トレリ問題)があり、これらもトレリ問題を攻略するうえで重要な問題である。申請者の主な研究テーマは無限小トレリ問題である。

Outline of Annual Research Achievements

Doctor Luca Rizzi has worked on hypersurfaces in special subclasses of spherical varieties. In particular Doctor Rizzi has proved the explicit equivalence between the theory of Massey products and the theory of the infinitesimal Torelli problem for smooth hypersurfaces in rational homogeneous varieties with Picard number one. In the same paper Doctor Rizzi has also been able to prove an infinitesimal Torelli theorem for smooth hypersurfaces in log-parallelizable varieties.

Doctor Rizzi has also worked on semistable fibrations of projective varieties and studied the monodromy associated to local systems of relative differential forms. Doctor Rizzi has given conditions on the finiteness of this monodromy. This is related to semi-ampleness problems and to an important conjecture by Fujita.

Research Progress Status

令和3年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和3年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (7 results)

All 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] University of Udine(イタリア)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Udine大学(イタリア)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Udine大学/Roma大学(イタリア)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Fujita decomposition and Massey product for fibered varieties2021

    • Author(s)
      L. Rizzi, F. Zucconi
    • Journal Title

      Nagoya Mathematical Journal

      Volume: - Pages: 624-652

    • DOI

      10.1017/nmj.2021.15

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Francesco Differential forms and quadrics of the canonical image2020

    • Author(s)
      Rizzi, Luca, Zucconi, Francesco
    • Journal Title

      Ann. Mat. Pura Appl.

      Volume: 199

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Weighted Fano varieties and infinitesimal Torelli problem2019

    • Author(s)
      Fatighenti, Enrico; Rizzi, Luca; Zucconi, Francesco
    • Journal Title

      J. Geom. Phys.

      Volume: 139 Pages: 1-16

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Fujita decomposition and Massey product for fibered varieties2021

    • Author(s)
      L. Rizzi
    • Organizer
      Index Theory and Complex Geometry, Institute for Mathematical Sciences, National University of Singapore
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-11-29   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi