• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Topological Study on Riemann Surfaces through Higher Cocycles

Research Project

Project/Area Number 19H01784
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionThe University of Tokyo

Principal Investigator

Kawazumi Nariya  東京大学, 大学院数理科学研究科, 教授 (30214646)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2021: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2019: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Keywordsリーマン面 / ループ演算 / トゥラエフ余括弧積 / 写像類群 / 自由群の自己同型群 / ねじれ係数コホモロジー / 安定コホモロジー / タイヒミュラー空間 / モジュライ空間 / ゴールドマン・トゥラエフ・リー双代数 / 発散コサイクル / 線型コード図式 / オペラド / ジョンソン準同型 / 二重導分 / ゲート二重導分
Outline of Research at the Start

リーマン面すなわち曲面の写像類群の線型近似であるジョンソン準同型について、その像の完全な特徴付けを目指す。換言すると、様々な代数的な情報を動員して曲面の自己同型という幾何学的な対象を完全に記述することが目標である。代表者らの先行結果は、曲面の自由ループについてのコサイクルがその記述に有用であることを示唆している。そこで自由ループの高次コサイクルを実装することが研究の中心となる。その際、複素解析的およびグラフ・ホモロジー的なアプローチも採用する。関連して写像類群のねじれ係数コホモロジーを研究する。これらの問題を中心軸としてリーマン面を中心とした位相幾何学全般にわたる研究を推進する。

Outline of Final Research Achievements

We discovered a new geometric aspect of the Turaev cobracket by introducing the notion of a double gate derivative, and discovered a secondary operation for the Turaev cobracket. We computed the Tor group of
the stable cohomology of the mapping class group with coefficients in the exterior algebra of the first rational homology group of the unit tangent bundle of the surface with respect to the stable cohomology algebra with trivial coefficients up to the fifth exterior power. Such a Tor group had never been computed. We studied a twisted version of the Kawazumi-Zhang invariant. Moreover we introduced a certain operadic structure on the twisted stable cohomology group of the automorphism groups of free groups.

Academic Significance and Societal Importance of the Research Achievements

曲面の位相的な構造を深く研究するために、曲面上のループのなす演算、曲面の位相的な対称性を記述する写像類群および曲面の上のリーマン面の構造を分類するタイヒミュラー空間の研究を行なった。これら3つのそれぞれについて、新しいループ演算を発見し、写像類群の新しい定量的な研究方法を提案し、タイヒミュラー空間上のある函数についての新しい知見を得た。関連して、既存のループ演算についても新たな幾何的解釈を与え、写像類群と関わりの深い自由群の自己同型群について新たな研究の視点を提案した。

Report

(4 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (23 results)

All 2023 2022 2021 2020 2019

All Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (16 results) (of which Int'l Joint Research: 5 results,  Invited: 15 results) Book (2 results) Funded Workshop (2 results)

  • [Journal Article] On the wheeled PROP of stable cohomology of Aut(F_n) with bivariant coefficients2023

    • Author(s)
      Nariya Kawazumi and Christine Vespa
    • Journal Title

      Algebraic and Geometric Topolory

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Some algebraic aspects of the Turaev cobracket2021

    • Author(s)
      Kawazumi Nariya
    • Journal Title

      Topology and Geometry

      Volume: - Pages: 329-356

    • DOI

      10.4171/irma/33-1/17

    • ISBN
      9783985470013, 9783985475018
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Goldman-Turaev formality implies Kashiwara-Vergne2020

    • Author(s)
      Alekseev Anton、Kawazumi Nariya、Kuno Yusuke、Naef Florian
    • Journal Title

      Quantum Topology

      Volume: 11 Issue: 4 Pages: 657-689

    • DOI

      10.4171/qt/143

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Stable cohomology of the mapping class groups with some particular twisted coefficients2022

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Seminaire GT3, University of Strasbourg
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A double version of Turaev’s gate derivatives2021

    • Author(s)
      Nariya Kawazumi
    • Organizer
      RIMS 研究集会「Geometry of discrete groups and hyperbolic spaces」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] トポロジー ― 否定的なものを代数的に捉える2021

    • Author(s)
      河澄響矢
    • Organizer
      2021年度教養総合「数理科学の最先端」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] リーマン面に関連する位相幾何学の問題2021

    • Author(s)
      河澄響矢
    • Organizer
      RIMS 共同研究「複素幾何学の諸問題 II」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 写像類群のリー代数を求めて2021

    • Author(s)
      河澄響矢, 久野雄介
    • Organizer
      日本数学会秋季総合分科会トポロジー分科会幾何学分科会特別講演
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] A double version of Turaev’s gate derivatives2021

    • Author(s)
      河澄響矢
    • Organizer
      大阪大学トポロジーセミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] A double version of Turaev’s gate derivatives2020

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Teichmuller Theory: Classical, Higher, Super and Quantum
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ゴールドマン括弧積と写像類群2020

    • Author(s)
      河澄響矢
    • Organizer
      研究集会「タイヒミュラー空間と双曲幾何学」
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] The mapping class group orbits in the framings of compact surfaces2020

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Geometry and Topology seminar, University of Luxembourg
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Formality of the Goldman-Turaev Lie bialgebra and its applications (3)(4)2020

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Interactions entre algebre et geometrie
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The Turaev cobracket and gate double derivatives2019

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Conference: New developments in quantum topology
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] グラフと曲線2019

    • Author(s)
      河澄響矢
    • Organizer
      高校生のための現代数学講座「いろいろな幾何学」
    • Related Report
      2019 Annual Research Report
  • [Presentation] Gate double derivatives2019

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Expansions, Lie algebras and Invariants
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Gate double derivatives2019

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Geometry and Topology seminar, University of Luxembourg
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Formality of the Goldman bracket2019

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Seminar "Homotopy Algebra and Geometry", University of Luxembourg
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] A double version of Turaev's gate derivatives2019

    • Author(s)
      Nariya Kawazumi
    • Organizer
      Seminaire Algebre et topologie, University of Strasbourg
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Book] トポロジーの基礎 上2022

    • Author(s)
      河澄 響矢
    • Total Pages
      336
    • Publisher
      東京大学出版会
    • ISBN
      9784130629256
    • Related Report
      2021 Annual Research Report
  • [Book] トポロジーの基礎 下2022

    • Author(s)
      河澄 響矢
    • Total Pages
      416
    • Publisher
      東京大学出版会
    • ISBN
      9784130629263
    • Related Report
      2021 Annual Research Report
  • [Funded Workshop] The 14th MSJ-SI : New Aspects of Teichmuller theory2022

    • Related Report
      2021 Annual Research Report
  • [Funded Workshop] Johnson homomorphisms and related topics 20192019

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi