2D materials with Rshba spin, local spin, and conduction electrons
Project/Area Number |
19H01825
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
|
Research Institution | Kyoto University |
Principal Investigator |
Aruga Tetsuya 京都大学, 理学研究科, 教授 (70184299)
|
Co-Investigator(Kenkyū-buntansha) |
奥山 弘 京都大学, 理学研究科, 准教授 (60312253)
八田 振一郎 京都大学, 理学研究科, 助教 (70420396)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥16,510,000 (Direct Cost: ¥12,700,000、Indirect Cost: ¥3,810,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2019: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
|
Keywords | 原子層科学 / 表面科学 / 電子輸送 / 極微細伝導体 / 表面 / トポロジカル絶縁体 / 層状物質 / 表面界面 / 電子状態 / 原子配列 / 超薄膜 / 低次元物質 / 単分子層磁性 / 表面・界面 / 低次元金属 / 共役π電子系 / 電気伝導 / 2次元物質 / 近藤効果 / Rashba効果 |
Outline of Research at the Start |
金属カルコゲナイド、金属ハライドなどの2次元物質が新しい電子材料として注目されている。本研究では、このような2次元物質が有する電子スピン物性と2次元電気伝導性に着目し、これらが織り成す低次元物性を明らかにする。具体的には、単層低次元金属の電気伝導性とそれに対する磁性不純物の効果、ラシュバ型スピン分裂を有する2枚の単層低次元金属同士の相互作用による超伝導など新しい物性現象の探索を進める。
|
Outline of Final Research Achievements |
Ultrathin conductive materials with a few atomic-layer thicknesses exhibit fascinating properties due to the confinement of the conduction of electrons and/or holes within two dimensions, and hence are expected to open the door to future electronics. In the present study, we studied electronic structure and electric properties of ultrathin conducting materials. The first example is a few-layer indium film on a silicon surface. By inserting a magnesium monolayer to the Si--In interface, we have succeeded to realize nearly free-standing indium bilayers. Another example is ultrathin films of bismuth telluride (BT), which is a layered topological insulator. We succeeded in precision layer growth of BT on insulator surface, and experimentally established that the electrical conduction in BT is localized within the Te-Te interfaces.
|
Academic Significance and Societal Importance of the Research Achievements |
エレクトロニクスの発展は、半導体素子の微細化と素子材料の多様化を通した高機能化、多機能化によって支えられてきた。本研究は、このようなエレクトロニクス研究の動向と方向を一にしつつ、その先を行く先鋭的な方法論に基づいて、原子層科学に基づく低次元物質の精密科学を開拓し、新たな低次元物性、超薄膜物性の方法論を切り開くものである。とりわけ、テルル化ビスマス超薄膜における原子レベル電子輸送経路が決定されたことにより、この電子輸送経路を化学的、物理的に修飾、制御する可能性が開拓できたことは、学術的にも、社会的にも大きな意義があると考える。
|
Report
(4 results)
Research Products
(27 results)