Project/Area Number |
19H01944
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 16010:Astronomy-related
|
Research Institution | National Astronomical Observatory of Japan |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥16,380,000 (Direct Cost: ¥12,600,000、Indirect Cost: ¥3,780,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2019: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
|
Keywords | 太陽光球 / 太陽彩層 / 磁場観測 / 面分光 / 近赤外狭帯域フィルター |
Outline of Research at the Start |
太陽彩層はコロナと同様、加熱・ダイナミクスの物理機構が未解決のままである。光球下でドライブされた磁気エネルギーは彩層を通過する過程で非線形化し、乱流、衝撃波、ジェットなど時間変化の激しい現象を引き起こし、光球より高温の彩層、コロナが生み出される。動的現象による磁気エネルギー輸送と散逸の一連のプロセスを観測できるのが彩層であり、その現場に迫ることが太陽物理研究のフロンティアである。口径1.5m太陽望遠鏡で運用する高精度面分光装置、狭帯域フィルター装置をスペインと共同開発し、高空間・高時間分解能観測がもたらす良質な磁場データ解析により磁気エネルギーの輸送・加熱機構の理解に確実な進展をもたらす。
|
Outline of Final Research Achievements |
The physical mechanism of heating and dynamics of the solar chromosphere remains unresolved. Magnetic energy generated under the chromosphere is nonlinearized during its passage through the chromosphere, causing dynamical phenomena such as turbulence, shock waves, and jets, which produce the high-temperature chromosphere and corona. The chromosphere is the place where a series of processes of magnetic energy transport and dissipation through dynamical phenomena can be directly observed, and approaching the site of such processes is the state-of-the-art in solar physics research. We will develop a high-precision integral field unit and a narrow-band tunable filtergraph to be operated with a 1.5-m solar telescope to achieve the necessary spatial resolution, and advance our understanding of the transport and heating mechanisms of magnetic energy by analyzing high-quality magnetic field data provided by high-spatial and high-temporal resolution observations.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した面分光装置の鍵となる16配列35μm幅スライサー鏡は、口径1.5m、近赤外で回折限界を達成する仕様であったが、より大きい口径の望遠鏡では可視光で回折限界性能を発揮でき観測研究の発展が期待できる。また、本研究の近赤外狭帯域チューナブルフィルターは、屈折率の大きいエタロンで構成されているため、小さな口径で太陽観測に必要な広視野を達成できる。合わせて本研究で用いた観測波長、データ解析の手法は、米国で運用中、欧州で検討中の口径4m太陽望遠鏡の面分光装置、近赤外狭帯域チューナブルフィルターにも適用できるものであり、将来の先端技術観測研究に生かすことができる点で意義が大きいと考える。
|