• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Substantiative research on the repeating contact model for the formation mechanism of granular region in subsurface fracture

Research Project

Project/Area Number 19H02034
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 18010:Mechanics of materials and materials-related
Research InstitutionNational Institute for Materials Science

Principal Investigator

OGUMA Hiroyuki  国立研究開発法人物質・材料研究機構, 構造材料研究拠点, 主幹研究員 (80515122)

Co-Investigator(Kenkyū-buntansha) 吉中 奎貴  国立研究開発法人物質・材料研究機構, 構造材料研究拠点, 主任研究員 (00825341)
Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥9,880,000 (Direct Cost: ¥7,600,000、Indirect Cost: ¥2,280,000)
Keywords超高サイクル疲労 / 内部起点型破壊 / 真空環境 / 組織微細化 / 凝着 / 粒状領域 / 高強度金属材料 / 放射光X線nano-CT
Outline of Research at the Start

高強度金属材料において「超高サイクル疲労」の重要性が指摘されている。超高サイクル疲労の特徴である内部起点型破壊の破面上には粒状の様相を呈した特異な領域(粒状領域)が形成される。しかし、その領域の形成機構について統一的な見解は得られていない。本研究では「疲労き裂が曝される環境」と「力学的条件」に着目し、粒状領域の形成機構を実験的に明らかにする。そして、理論的に内部起点型破壊の強度ならびに寿命を精度よく予測するための基盤を築く。

Outline of Final Research Achievements

In the very high cycle fatigue of titanium alloys, a peculiar region with a granular aspect forms on the fracture surface of the subsurface fracture. The formation mechanism of this granular region was investigated, focusing on the environment to which the fatigue crack is exposed and the mechanical conditions. Model experiments using spherical specimens, along with detailed observations and analysis, revealed that repeated surface contact and separation in a vacuum caused the formation of asperities. Moreover, it was found that microstructural refinement and adhesion were the dominant phenomena. Based on the experimental results, a new model for the formation mechanism of the granular region is proposed. This model can explain the characteristics of the granular region and the properties of a subsurface fracture, which occurs at lower stress levels and has a longer life compared to a surface fracture.

Academic Significance and Societal Importance of the Research Achievements

超高サイクル疲労における内部疲労き裂の進展機構について、材料の種類に依存しないモデルを示したことにより、高強度金属材料に関して統一的な疲労強度・寿命の評価と予測手法を確立できることが示唆される。そして、破壊機構の詳細が明らかになることにより、超高サイクル域における高強度化や長寿命化ならびにバラツキを小さくするための材料設計や構造設計の指針を出すことが可能になると思われる。本研究の成果が、高強度金属材料を適用する機械構造物の高信頼性化へと繋がることが期待される。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (12 results)

All 2023 2022 2021 2019

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] Characterization of internal fatigue crack initiation in Ti‐6Al‐4V alloy via synchrotron radiation X‐ray computed tomography2023

    • Author(s)
      Yoshinaka Fumiyoshi、Nakamura Takashi、Oguma Hiroyuki、Fujimura Nao、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      Fatigue & Fracture of Engineering Materials & Structures

      Volume: - Issue: 6 Pages: 1-10

    • DOI

      10.1111/ffe.13957

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Full-life growth behavior of a naturally initiated internal fatigue crack in beta titanium alloy via in situ synchrotron radiation multiscale tomography2023

    • Author(s)
      Xue Gaoge、Nakamura Takashi、Fujimura Nao、Takahashi Kosuke、Oguma Hiroyuki、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      International Journal of Fatigue

      Volume: 170 Pages: 107571-107571

    • DOI

      10.1016/j.ijfatigue.2023.107571

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Initiation and propagation of small fatigue crack in beta titanium alloy observed through synchrotron radiation multiscale computed tomography2022

    • Author(s)
      Xue Gaoge、Nakamura Takashi、Fujimura Nao、Takahashi Kosuke、Oguma Hiroyuki、Takeuchi Akihisa、Uesugi Masayuki、Uesugi Kentaro
    • Journal Title

      Engineering Fracture Mechanics

      Volume: 263 Pages: 108308-108308

    • DOI

      10.1016/j.engfracmech.2022.108308

    • Related Report
      2022 Annual Research Report 2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Formation mechanism of the distinctive granular fracture surface in subsurface fracture of Ti6Al4V alloy2022

    • Author(s)
      Oguma Hiroyuki
    • Journal Title

      Materialia

      Volume: 21 Pages: 101312-101312

    • DOI

      10.1016/j.mtla.2021.101312

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Initiation and Propagation Processes of Internal Fatigue Cracks in β Titanium Alloy Based on Fractographic Analysis2021

    • Author(s)
      Xue Gaoge、Nakamura Takashi、Fujimura Nao、Takahashi Kosuke、Oguma Hiroyuki
    • Journal Title

      Applied Sciences

      Volume: 11 Issue: 1 Pages: 131-131

    • DOI

      10.3390/app11010131

    • Related Report
      2021 Annual Research Report 2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Initiation and early growth behaviors of an internal fatigue crack in beta titanium alloy via synchrotron radiation multiscale computed tomography2022

    • Author(s)
      Gaoge XUE, Nao FUJIMURA, Takashi NAKAMURA, Kosuke TAKAHASHI, Hiroyuki OGUMA, Akihisa TAKEUCHI, Masayuki UESUGI, and Kentaro UESUGI
    • Organizer
      日本材料学会 第35回疲労シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] Effects of vacuum environment on the formation of distinctive fracture surface in subsurface fracture of Ti6Al4V alloy2021

    • Author(s)
      Hiroyuki OGUMA, Takashi NAKAMURA
    • Organizer
      Eighth International Conference on Very High Cycle Fatigue (VHCF8)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Initiation and propagation process of small fatigue crack in beta titanium alloy via multiscale synchrotron radiation computed tomography2021

    • Author(s)
      Gaoge XUE, Takashi NAKAMURA, Nao FUJIMURA, Hiroyuki OGUMA, Akihisa TAKEUCHI, Masayuki UESUGI, Kentaro UESUGI
    • Organizer
      Eighth International Conference on Very High Cycle Fatigue (VHCF8)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Nondestructive observation of internal fatigue crack initiation in Ti-6Al-4V via synchrotron radiation X-ray CT2021

    • Author(s)
      Fumiyoshi Yoshinaka, Takashi NAKAMURA, Hiroyuki OGUMA, Nao FUJIMURA, Akihisa TAKEUCHI, Masayuki UESUGI, Kentaro UESUGI
    • Organizer
      Eighth International Conference on Very High Cycle Fatigue (VHCF8)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A fractographic study of the initiation and propagation progress of internal fatigue cracks in Ti-22V-4Al with different alpha-phase precipitation2021

    • Author(s)
      Gaoge Xue, Takashi Nakamura1, Nao Fujimura, Kosuke Takahashi and Hiroyuki Oguma
    • Organizer
      FATIGUE 2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] チタン合金の内部起点型疲労破壊における特異な破面領域形成に及ぼす影響因子2019

    • Author(s)
      小熊 博幸
    • Organizer
      日本材料学会 第68 期通常総会・学術講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Ti6Al4V合金の内部起点型疲労破壊における特異な破面領域の形成機構と組織との相関2019

    • Author(s)
      小熊 博幸
    • Organizer
      日本機械学会 M&M2019 材料力学カンファレンス
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi