Project/Area Number |
19H02083
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Tokyo University of Science |
Principal Investigator |
UENO ICHIRO 東京理科大学, 理工学部機械工学科, 教授 (40318209)
|
Co-Investigator(Kenkyū-buntansha) |
堀 琢磨 東京農工大学, 工学(系)研究科(研究院), 准教授 (50791513)
元祐 昌廣 東京理科大学, 工学部機械工学科, 教授 (80434033)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥7,020,000 (Direct Cost: ¥5,400,000、Indirect Cost: ¥1,620,000)
|
Keywords | 動的濡れ / メニスカス / 表面張力 / 液滴搬送 / メニスカス・ポンプ / 馬蹄渦 |
Outline of Research at the Start |
『動的な濡れ』力学を駆使し,系外からの新たなエネルギー注入を必要としない超高効率液滴搬送機構,すなわち本研究で提案する『メニスカス・ポンプ』機構の解明を目的とする.平滑基板上での液滴前縁部の濡れ拡がり速度が,基板上に静置した単一球状粒子との接触によって局所的に数~約10倍へと爆発的に増加する現象を対象とし,研究代表者が主導する国際共同研究体制,(1)実験(日本),(2)理論(フランス),(3)数値解析(日本・フランス)により,多重スケールで展開する『動的な濡れ』力学に焦点を当て,基板上微小構造物との相互作用によって液滴前縁部が加速する機構の解明を目指す.
|
Outline of Final Research Achievements |
Our research group indicated that a disturbance such as a microparticle on the pathway of a spreading droplet has shown the tremendous ability to accelerate locally the motion of the macroscopic contact line. To better understand the mechanisms behind the particle-liquid interaction, we numerically investigate the pressure and velocity fields in the liquid film. The results are compared to experiments assessing the temporal shape variation of the liquid-film meniscus from which pressure difference around the particle is evaluated. The flow structure within the liquid meniscus forming at the foot of the micro-pillar evinces a horseshoe vortex wrapping around the obstacle, notwithstanding that the Reynolds number in our system is extremely low. Here, the adverse pressure gradient driving flow reversal near the bounding wall is caused by capillarity instead of inertia. The horseshoe vortex is entangled with other vortical structures, leading to an intricate flow system.
|
Academic Significance and Societal Importance of the Research Achievements |
動的な濡れを含む界面熱流体力学を駆使し,極めて小さいエネルギー注入によって液体駆動を実 現する超高効率液滴搬送機構,すなわち『メニスカス・ポンプ』機構の解明を実現する。少ないエネルギー注入による濡れや反応の制御、また、効率的な液体輸送技術により廃液量の減少により環境負荷の低減を実現する。
|