Building of Technical Basis for fabrication of high-power AlN devices
Project/Area Number |
19H02166
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2022: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2021: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
|
Keywords | AlN / パワーデバイス / イオン注入 / MOSFET / 高温デバイス / SBD / 不純物拡散 / 表面処理 / 窒化物半導体 / Siドーピング / MESFET / 高温熱処理 / 接触抵抗 / 熱酸化 / トランジスタ / MOS構造 / 点欠陥評価 / オーミック電極 / 高温アニール / デバイスプロセス / エッチング / 高耐圧素子 / 縦型デバイス / 金属/半導体界面 |
Outline of Research at the Start |
省エネ化に向けて、低損失かつ高出力素子実現の社会的要請が高まっている。最近、申請者は、窒化アルミニウム(AlN)を用いたトランジスタの世界初動作に成功した。AlNは絶縁破壊電界が最も大きい半導体であり、AlNを用いた高耐圧素子作製は、半導体素子の性能限界への探求に繋がる。しかし、現在のAlN素子は、高い接触抵抗と不十分なSchottky障壁高さにより、AlN本来の性能が発揮できていない。本研究では、つくばエリアの共用設備環境を最大限に活用して、『超高耐圧素子実現に向けたAlN素子作製の技術基盤を構築する』。独自の手法として、超高温下でも分解しないAlNの性質に着目した接触抵抗低減法を提案する。
|
Outline of Final Research Achievements |
For saving energy, low-loss and high-power devices are highly demanded. In 2019, we achieved the first demonstration of transistors with an aluminum nitride (AlN) channel. AlN is a semiconductor with the highest critical electric field and the largest bandgap energy. The fabrication of AlN devices is challenge toward the operation limits of semiconductor devices. However, the AlN devices have suffered from the high contact resistance and insufficient Schottky barrier height. In this work, we establish the fabrication process for AlN devices by making maximum use of the open facility in the Tsukuba area (Tsukuba University, AIST, and NIMS). As a unique method, we try to reduce the contact resistivity by focusing on the material property of AlN, which does not decompose even at 1600 degree C.
|
Academic Significance and Societal Importance of the Research Achievements |
AlNは、現在、素子動作可能な半導体中で、絶縁破壊電界強度とバンドギャップが最も大きい材料である。絶縁体に分類される時さえあるAlNを用いて高性能素子を作製することは、半導体材料の限界に挑戦する研究であり、学術的に意義深い。 AlN素子作製の技術基盤を構築することは、新規高耐圧素子用材料の分野開拓および普及に繋がる。AlNの物性を最大限生かした超高耐圧・高温素子動作に成功すれば、既に実用化されているSiCやGaNよりも優れた耐圧とオン損失を有する素子の実現が期待できる。回路の究極的な小型化と低消費電力化に繋がり、地球の温暖化抑制に貢献できることから、社会的にも意義深い。
|
Report
(5 results)
Research Products
(15 results)