• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integration of Image Sensor and Analog CNN Circuits Reducing Image Recognition Energy by Factor of 1/1000

Research Project

Project/Area Number 19H02188
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21060:Electron device and electronic equipment-related
Research InstitutionThe University of Tokyo

Principal Investigator

Takamiya Makoto  東京大学, 生産技術研究所, 教授 (20419261)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥16,380,000 (Direct Cost: ¥12,600,000、Indirect Cost: ¥3,780,000)
Fiscal Year 2021: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2019: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Keywords画像認識 / 畳み込みニューラルネットワーク / 撮像素子 / エネルギー / 回路
Outline of Research at the Start

AI技術を広く社会に普及させる際の最大の課題が、大消費電力である。特に、深層畳み込みニューラルネットワーク(CNN)を用いた画像認識の消費電力が大きい。そこで、撮像素子の直近にCNN回路を集積化する新技術により、CNN計算のエネルギーを3桁減らすことを目指す。

Outline of Final Research Achievements

With the widespread use of AI technology, ultra-low latency convolutional neural network (CNN) processing is highly demanded in fields that require real-time image classification such as autonomous driving and VR applications. This paper proposes an ultra-low-latency all-digital in-imager 2D binary convolutional neural network (II2D-BNN) accelerator for image classification. In II2D-BNN, multiply-accumulate operations (MACs) are processed inside the imager array parallelly in 2D, without extra latency for the row-by-row processing and data access with random access memories (RAMs). Convolution and sub-sampling operations using a 3 × 3 kernel are completed in only nine steps of batch-processing-in-2D regardless of image size using the II2D-BNN architecture, leading to over 88.5% reduction in computing latency compared with state-of-the-art architectures using batch-processing-in-1D.

Academic Significance and Societal Importance of the Research Achievements

本研究成果「デジタルIn-Imager二次元畳み込みニューラルネットワークアクセラレータIC」により、将来、深層畳み込みニューラルネットワークを用いた高精度の画像認識を低消費電力かつ低遅延時間に実現可能になることが期待される。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (3 results)

All 2022 2020

All Presentation (3 results)

  • [Presentation] 超低遅延画像認識に向けたデジタルIn-Imager二次元畳み込みニューラルネットワークアクセラレータ2022

    • Author(s)
      王 叡智,高宮 真
    • Organizer
      電子情報通信学会,LSIとシステムのワークショップ,ポスターセッション 学生部門
    • Related Report
      2021 Annual Research Report
  • [Presentation] 高エネルギー効率のピクセル近傍2次元CNNアクセラレータの提案2020

    • Author(s)
      王 叡智,高宮 真
    • Organizer
      子情報通信学会ソサイエティ大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Near-Pixel Binary Convolution Engine for Energy-Efficient Image Recognition2020

    • Author(s)
      C. Wu and M. Takamiya
    • Organizer
      電子情報通信学会総合大会
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi