Project/Area Number |
19H02207
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | NTT Basic Research Laboratories |
Principal Investigator |
Xu Xuejun 日本電信電話株式会社NTT物性科学基礎研究所, フロンティア機能物性研究部, 主任研究員 (80593334)
|
Co-Investigator(Kenkyū-buntansha) |
後藤 秀樹 日本電信電話株式会社NTT物性科学基礎研究所, 企画, 所長 (10393795)
俵 毅彦 日本大学, 工学部, 教授 (40393798)
尾身 博雄 大和大学, 理工学部, 教授 (50257218)
澤野 憲太郎 東京都市大学, 理工学部, 教授 (90409376)
稲葉 智宏 日本電信電話株式会社NTT物性科学基礎研究所, フロンティア機能物性研究部, 研究員 (90839119)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥15,860,000 (Direct Cost: ¥12,200,000、Indirect Cost: ¥3,660,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
|
Keywords | 希土類イオン / 光増幅器 / レーザー / シリコンフォトニクス / 光導波路 / ナノ共振器 / Rare-earth oxide / Optical amplifier / Laser / Molecular beam epitaxy / Silicon photonics |
Outline of Research at the Start |
In this project, monolithic-integrated optical amplifiers and lasers will be demonstrated by using single crystalline rare-earth oxide (REO) epitaxially grown on Si as novel gain medium and high-index subwavelength dielectric resonators with strong magnetic response as novel device structure. Furthermore, electrically driven lasers will also be demonstrated by integrating optically pumped lasers with light emitting diodes as optical pumping source on the same silicon substrate.
|
Outline of Final Research Achievements |
High quality single-crystal rare-earth oxide thin films (Gd2O3 and (ErGd)2O3) have been successfully grown on silicon-on-insulator substrate by using molecular beam epitaxy method. For realization optical amplifiers, a waveguide platform with low loss (2.3 dB/cm) and large optical confinement factor (~42%) has been demonstrated. Through pump-probe measurement, optical signal enhancement up to 24 dB/cm has been obtained in the waveguide and material transparency has been achieved. Microring resonators with high Q-factors have also been demonstrated for realizing lasers. High Q-factor metasurface structures have also been designed for investigation and manipulation of light emission of electric dipole and magnetic dipole transitions of Er3+ ions. Finally, the demonstrated waveguides and resonators have also found to be a promising platform for integrated quantum optical devices.
|
Academic Significance and Societal Importance of the Research Achievements |
シリコン上にモノリシック集積可能な光増幅器とレーザーはシリコンフォトニクスにおいて最も重要かつ実現されてない要素デバイスである。本研究で実証された酸化希土類薄膜材料及びデバイス構造では、これらのデバイスの実現に非常に有望なプラットフォームと言え、モノリシック光集積回路技術に活用できると期待される。
|