Project/Area Number |
19H02253
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 22040:Hydroengineering-related
|
Research Institution | Kansai University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
中條 壮大 大阪市立大学, 大学院工学研究科, 准教授 (20590871)
金 洙列 熊本大学, くまもと水循環・減災研究教育センター, 准教授 (60508696)
志村 智也 京都大学, 防災研究所, 准教授 (70789792)
森 信人 京都大学, 防災研究所, 教授 (90371476)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2021: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2019: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
|
Keywords | 高潮 / 気候変動 / アンサンブル予測 / ディープラーニング / 確率台風モデル |
Outline of Research at the Start |
気候変動の影響を受け,全世界での熱帯低気圧の発生数は減少傾向にあるが,強度は増大し,最大風速や降水強度も増大する可能性は高まっている.地球温暖化シナリオ下における高潮リスクの精度・確度の高い将来変化予測を行うことは,人口・資産が集積した沿岸部の減災にとって重要な課題である.変化する地球環境の中で,既往最大事例に基づいた想定で対策をして想定外を繰り返すのではなく,科学的な根拠で確率的に想定をする時期に来ている.本研究の目的は,高潮モデルや台風モデル,ニューラルネットワークモデルを高度化改良するとともに,多数アンサンブル実験を行うことで確率的な巨大高潮リスクの将来変化を予測することである.
|
Outline of Final Research Achievements |
The purpose of this study is to predict future changes in probabilistic major storm surge risk. To achieve this goal, we have improved the storm surge model, stochastic typhoon model, and neural network model, and conducted multiple ensemble experiments to estimate the future changes in storm surge height with a high degree of scientific confidence. The following research projects have been conducted: (1) multiple ensemble storm surge simulations and event attribution for extreme typhoons causing storm surge disasters, (2) improvement and application of a global stochastic typhoon model, (3) development of a deep learning storm surge prediction model, and (4) development of a neural network model for storm surge prediction. (3) development of a deep learning storm surge forecasting model, and (4) introduction of a wave overtopping/wave overflow transition model into a coupled storm surge/wave model.
|
Academic Significance and Societal Importance of the Research Achievements |
台風を人工的に発生させる確率台風モデルはいくつか開発されているが,台風特性に海面水温分布を考慮して温暖化の影響を反映できるモデルはない.気象データを入力して高潮水位の最大値を予測するニューラルネットワークモデルはいくつかあるが,高潮水位予測にディープラーニング(深層学習)を適用した事例はない.さらに,高潮と波浪の相互作用,越波と越流の遷移過程,高潮の河川遡上を個別にモデル化した事例はあるが,すべてを統合したモデルはない.
|