• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Materials design using first principles calculations and machine learning

Research Project

Project/Area Number 19H02419
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 26010:Metallic material properties-related
Research InstitutionKyoto University

Principal Investigator

Seko Atsuto  京都大学, 工学研究科, 准教授 (10452319)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2021: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2020: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2019: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
Keywords機械学習 / 第一原理計算 / 結晶構造探索 / 原子間ポテンシャル / 構造探索 / 転移学習 / 材料インフォマティクス / 原子間ポテンシャル
Outline of Research at the Start

本研究は,最先端の機械学習を積極的に導入することにより,第一原理計算の多重実行に基づく高度な材料計算の方法論構築を行うものである.第一原理計算の多重実行に基づく高度な材料計算において本質的な課題である3つの研究項目(原子間ポテンシャル構築,最安定結晶構造探索,表現学習による記述子抽出)を設定し,第一原理計算に基づく現実的な材料計算を目指す.

Outline of Final Research Achievements

The machine-learning potential (MLP) providing an accurate description of the relationship between the energy and the crystal structure and its potential applications are of growing interest. Such an approach is a framework of polynomial MLP, in which the introduction of group-theoretical high-order rotational polynomial invariants contributes to systematically derive MLPs with high predictive power for a wide range of structures, including extreme structures. This approach successfully constructs accurate and efficient MLPs in a variety of elemental metals and alloys. The Pareto optimal polynomial MLPs with different trade-offs between accuracy and computational efficiency for various systems are distributed in Polynomial Machine Learning Potential Repository with our implementation (polymlp-package) that enables us to use the polynomial MLPs in the LAMMPS code.

Academic Significance and Societal Importance of the Research Achievements

基礎的な第一原理計算は,系の元素・結晶構造をもとに,エネルギーや電子状態を計算するものであり,材料研究に広く用いられている.しかし,実際の材料の物性や現象に対しては,非常に単純なモデルを導入し第一原理計算を行う以外なく,その精度を確かめる手段すらない.そのような状況において,本研究は,第一原理計算の精度で,実際の材料物性や現象を取り扱う方法を構築することで,材料研究を大幅に進展させるものである.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (14 results)

All 2022 2021 2020 2019

All Journal Article (8 results) (of which Peer Reviewed: 8 results,  Open Access: 5 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results)

  • [Journal Article] Modeling of materials and its applications using density functional theory calculation and machine learning2022

    • Author(s)
      世古 敦人
    • Journal Title

      Oyo Buturi

      Volume: 91 Issue: 2 Pages: 77-81

    • DOI

      10.11470/oubutsu.91.2_77

    • NAID

      130008149721

    • ISSN
      0369-8009, 2188-2290
    • Year and Date
      2022-02-01
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Structure and lattice thermal conductivity of grain boundaries in silicon by using machine learning potential and molecular dynamics2022

    • Author(s)
      Susumu Fujii, Atsuto Seko
    • Journal Title

      Computational Materials Science

      Volume: 204 Pages: 111137-111137

    • DOI

      10.1016/j.commatsci.2021.111137

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Finding well-optimized special quasirandom structures with decision diagram2021

    • Author(s)
      Shinohara Kohei、Seko Atsuto、Horiyama Takashi、Tanaka Isao
    • Journal Title

      Physical Review Materials

      Volume: 5 Issue: 11 Pages: 113803-113803

    • DOI

      10.1103/physrevmaterials.5.113803

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Prediction of perovskite-related structures in ACuO3-x (A = Ca, Sr, Ba, Sc, Y, La) using density functional theory and Bayesian optimization2020

    • Author(s)
      A. Seko and S. Ishiwata
    • Journal Title

      Phys. Rev. B

      Volume: 101 Issue: 13 Pages: 134101-134101

    • DOI

      10.1103/physrevb.101.134101

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram2020

    • Author(s)
      Shinohara Kohei、Seko Atsuto、Horiyama Takashi、Ishihata Masakazu、Honda Junya、Tanaka Isao
    • Journal Title

      The Journal of Chemical Physics

      Volume: 153 Issue: 10 Pages: 104109-104109

    • DOI

      10.1063/5.0021663

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Application of machine learning potentials to predict grain boundary properties in fcc elemental metals2020

    • Author(s)
      Takayuki Nishiyama, Atsuto Seko, and Isao Tanaka
    • Journal Title

      Phys. Rev. Materials

      Volume: 4 Issue: 12 Pages: 123607-123607

    • DOI

      10.1103/physrevmaterials.4.123607

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine learning potentials for multicomponent systems: The Ti-Al binary system2020

    • Author(s)
      Seko Atsuto
    • Journal Title

      Physical Review B

      Volume: 102 Issue: 17 Pages: 174104-174104

    • DOI

      10.1103/physrevb.102.174104

    • NAID

      120006898049

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Group-theoretical high-order rotational invariants for structural representations: Application to linearized machine learning interatomic potential2019

    • Author(s)
      Seko Atsuto、Togo Atsushi、Tanaka Isao
    • Journal Title

      Physical Review B

      Volume: 99 Issue: 21 Pages: 214108-214108

    • DOI

      10.1103/physrevb.99.214108

    • NAID

      120006767915

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] 第一原理計算と機械学習を用いた原子間相互作用のモデリングと結晶構造探索2021

    • Author(s)
      世古敦人
    • Organizer
      第5回固体化学フォーラム研究会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 第一原理計算と機械学習を用いた原子間相互作用のモデリングと結晶構造探索2021

    • Author(s)
      世古敦人
    • Organizer
      MRM Forum 2021 tutorial
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 第一原理計算と機械学習による原子間ポテンシャルおよび結晶構造探索2020

    • Author(s)
      世古敦人
    • Organizer
      日本セラミックス協会 第33回秋季シンポジウム
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Group-theoretical high-order rotational invariants: Application to linearized machine learning interatomic potential2019

    • Author(s)
      Atsuto SEKO
    • Organizer
      ICMAT 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 第一原理計算・統計力学計算・機械学習による材料物性予測2019

    • Author(s)
      世古敦人
    • Organizer
      固体イオニクス討論会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 機械学習による原子間ポテンシャルおよび結晶構造探索2019

    • Author(s)
      世古敦人
    • Organizer
      レア・イベントの計算科学 第3回ワークショップ
    • Related Report
      2019 Annual Research Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi