Project/Area Number |
19H02427
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology (2021) Tokyo Institute of Technology (2019-2020) |
Principal Investigator |
Matsuzaki Kosuke 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (40571500)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥18,330,000 (Direct Cost: ¥14,100,000、Indirect Cost: ¥4,230,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥15,730,000 (Direct Cost: ¥12,100,000、Indirect Cost: ¥3,630,000)
|
Keywords | 窒化物 / ドーピング / トランジスタ / 窒化物半導体 / 両極性半導体 / 太陽電池材料 / アンバイポーラトランジスタ / 太陽電池 |
Outline of Research at the Start |
薄膜太陽電池は多結晶Siに匹敵する高い変換効率を安価に製造できる反面、その性能は希少・有毒金属に依存するため新しい光吸収層の材料探索が急務となっている。1. ありふれた構成元素、2. 高正孔・電子移動度、3. 安価・大面積に適した製造工程の観点から、p・n極性制御可能な銅窒化物半導体を光吸収層代替材料として提案し、高変換効率の銅窒化物太陽電池の実現を目指す。
|
Outline of Final Research Achievements |
Using post heat treatment with ammonia, we have developed a high-quality crystal fabrication method that can reduce the in-gap levels required for high performance solar cells and thin-film transistors. The copper nitride thin film obtained by direct nitridation of Cu thin film can sufficiently suppress carrier concentration in terms of residual electron concentration, and Cu3N polycrystalline channel TFTs have been confirmed to have an ambipolar operation in which p-channel and n-channel coexist. The Cu3N polycrystalline channel TFTs exhibited ambipolar operation with p-channel and n-channel coexistence, and the performance was equivalent to that of CMOS inverters using oxide semiconductors.
|
Academic Significance and Societal Importance of the Research Achievements |
酸化物や窒化物に代表されるイオン性半導体は、アモルファスの形態でも高電子移動度を示し、様々なディスプレイの駆動用薄膜トランジスタ(TFT)として実用化されている。しかし、これらの素子はnチャネルTFTで構成され、良好なpチャネル特性を示すTFTがないため、CMOSへの応用は十分に進んでいない。本研究の成果では、銅と窒素の単純組成のみで容易に高性能な酸化物半導体と同等のデバイス特性が得られることから、酸化物だけでなく窒化物を用いた素子開発の可能性が示された。また窒化銅薄膜の半導体デバイスとしての性能が実証されたことから今後は薄膜太陽電池への応用が期待される。
|