Mechanism investigation and modeling of material deformation enhancement in micro forming with vibration energy assistance
Project/Area Number |
19H02481
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Yang Ming 東京都立大学, システムデザイン研究科, 教授 (90240142)
|
Co-Investigator(Kenkyū-buntansha) |
清水 徹英 東京都立大学, システムデザイン研究科, 准教授 (70614543)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥11,050,000 (Direct Cost: ¥8,500,000、Indirect Cost: ¥2,550,000)
|
Keywords | マイクロ金属加工 / 超音波振動 / 素材変形促進 / SEM-EBSD分析 / モデル化 / 材料加工・処理 / 精密部品加工 / 金属成形加工 / 塑性変形 |
Outline of Research at the Start |
本研究では、超音波振動が素材変形に及ぼす影響に関するメカニズムおよびそのスケール効果の解明及び素材変形に関する理論モデル(塑性変形構成式)の提案を目的とする。変形抵抗や結晶構造が異なる被加工素材に対して、超音波振動エネルギーと素材の変形促進因子である転位移動エネルギーとの相関に着目し、超音波振動による塑性変形時の素材転位密度の変化を実験的に評価し、素材変形抵抗の変化との関係から素材変形促進効果を定量化する。さらに素材の結晶構造、転位ポテンシャルエネルギー、転位密度などのパラメータ及びスケール効果を考慮した素材変形理論モデルを構築し、プロセスシミュレーションによって、その妥当性を評価する。
|
Outline of Final Research Achievements |
A high-frequency response force sensor was introduced to enable the separation of various effects such as stress superposition, acoustic softening and impact by real-time measurement of the contact state between the punch and the material during ultrasonically assisted forming. In addition, SEM-EBSD analysis was applied to investigate structure of the deformed specimens. It is found that the acoustic softening can reduce the dislocation density and randomize the dislocation distribution、 and it increases dislocation mobility、 leads to dynamic recovery and dislocation annihilation. A constitutive model for prediction of the flow stress incorporating the dislocation transfer promotion of crystalline materials was proposed based on the experimental results. The prediction results was compared with the experimental results of Al and Cu. The estimation results by the constitutive model showed good agreement for different materials and amplitudes.
|
Academic Significance and Societal Importance of the Research Achievements |
従来研究で、ブラッハ効果として評価解釈されてきた応力重畳と音響軟化を分離し、個々の変形メカニズムに適した理論モデルを構築した。素材の動的な変形挙動をオンラインモニタリングし、現象の解析、および各種効果の定量的な評価に基づいた理論モデル構築は、超音波振動援用技術における複雑性を解決する点で大きく貢献する。 従来から超音波振動の効果を塑性加工に応用することが試みられてきた。超音波振動援用マイクロ塑性加工プロセスの確立は加工精度の向上や素材の成形性向上効果が大きく、実用化が期待されている。超音波振動の各種効果と素材の変形に結び付ける理論式の提案により、その実用化が促進され、波及効果が大きい。
|
Report
(4 results)
Research Products
(5 results)