Development of hydrogen-storage materials using meta-stable dissociative adsorption on metal-dispersed carbon nanohorns
Project/Area Number |
19H02496
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27010:Transport phenomena and unit operations-related
|
Research Institution | Kyoto University |
Principal Investigator |
SANO NORIAKI 京都大学, 工学研究科, 教授 (70295749)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2021: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2019: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
|
Keywords | 水素吸蔵 / 炭素材料 / ナノ材料 / アーク放電 / 水素 / カーボンナノホーン / エネルギー / hydrogen storage / nano carbon / arc plasma / carbon nanohorn |
Outline of Research at the Start |
スピルオーバー効果を最大限に活用した水素吸蔵材料の構造最適化を行う。この原理に基づく材料は金属分散カーボンナノホーンであり、水素吸蔵合金と同程度の水素吸蔵量を示すが軽量であることから実用上極めて有用となる。同材料を合成するためには申請者が独自に開発しているガス導入アーク法を用い、金属(合金)の組成、金属分散度、金属含有率、カーボンナノホーンの細孔構造、等を最適化する。
|
Outline of Final Research Achievements |
The structural optimization of the hydrogen-storage materials is conducted based on hydrogen-spill over effect. The base material is the metal-dispersed carbon nanohorns, and it is considered to be effective in terms of lightness for real applications. Also, the elucidation of the hydrogen storage mechanism is hot topic today. To synthesize such material, the method using gas-injected submerged arc-discharge is used, and the metal components, metal dispersity, metal content, carbonaceous structure will be optimized. In this research, the experiment using the metal-dispersed carbon nanohorn to store hydrogen at high hydrogen pressure is conducted, and the material structure and synthesis conditions are systematically analyzed to maximize the hydrogen storage amount. In addition, molecular orbital calculation is performed on the hydrogen-spillover phenomena to elucidate its mechanism.
|
Academic Significance and Societal Importance of the Research Achievements |
研究では金属(合金)の組成、金属分散度、金属含有率、カーボンナノホーンの細孔構造、等の最適化因子と水素吸蔵量との関係を明らかにし、スピルオーバー効果が最大限に活用される構造を探索する。この検討結果を活用し、軽量で十分な水素吸蔵能力を有する材料を低コストで合成する手法を確立する。得られた知見は、効率良く水素を貯蔵できる材料合成のスケールアップに活用することができ、実用化に直結する。軽量で十分な水素吸蔵能力を有する材料の高効率製造法が実用化されると、水素自動車や燃料電池車などの水素を運搬する必要のある自動車への利用に有用である。
|
Report
(4 results)
Research Products
(7 results)