Project/Area Number |
19H02511
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2021: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
|
Keywords | 人工光合成 / カーボンニュートラル / 水素製造 / 色素増感 / 過渡吸収分光 / 光触媒 / 光増感剤 / ナノシート / ナノ材料 / 層状化合物 / ナノ粒子 |
Outline of Research at the Start |
本研究では、水の酸化触媒機能をもった第一遷移金属酸化物ナノ粒子とワイドギャップの金属酸化物ナノシートを組み合わせて新たな可視光吸収を生み出し、それを水の完全分解反応に利用することを目指している。反応活性に大きく影響すると予想される遷移金属酸化物ナノ粒子とナノシートを化学組成と物性の点から最適化し、最終的には酸化還元サイトを空間的に分離した光触媒系を構築することで、水の完全分解を達成する。
|
Outline of Final Research Achievements |
A hybrid material consisting of niobate nanosheets and ruthenium(II) complexes was found to act as a photocatalyst for the efficient generation of hydrogen from water under visible light irradiation. Combined with a tungsten trioxide-based photocatalyst for oxygen generation, they succeeded in splitting water into hydrogen and oxygen in the presence of an iodine-based redox agent. The performance of this system varied greatly depending on the type of ruthenium complex, the presence of modifiers such as amorphous alumina, and the synthesis method of niobate nanosheets. Spectroscopy measurements revealed that a photocatalytic design that suppresses the reverse electron transfer to the one-electron oxidizing species of the ruthenium complexes formed during the reaction and maximizes the electron injection efficiency from the excited state ruthenium to the nanosheet is essential for high activity.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで、色素増感型光触媒では、色素分子の耐久性や担体酸化物の制約があることから、水の水素と酸素への完全分解が可能な高性能の光触媒を創出することは困難と考えられてきた。今回の一連の研究成果により、精密設計されたナノ材料を色素増感型光触媒の部材として活用することで、太陽光エネルギーを化学エネルギーへ変換する革新的な機能材料を創出できる可能性が見えてきた。今後、可視光吸収を担う色素の分子設計や類似ナノシート材料を検討することで、色素増感型光触媒のさらなる性能向上が見込まれる。結果として本研究成果が、太陽光エネルギー変換を指向した色素増感型光触媒の開発を大きく促進すると期待される。
|