Project/Area Number |
19H02534
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28010:Nanometer-scale chemistry-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Kubo Takaya 東京大学, 先端科学技術研究センター, 特任教授 (10447328)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥14,300,000 (Direct Cost: ¥11,000,000、Indirect Cost: ¥3,300,000)
|
Keywords | 太陽電池 / 赤外光電変換 / 量子ドット / ワイドギャップ半導体 / ナノ構造材料 / 低次元材料 / コロイド量子ドット / ZnOナノワイヤ / バルクヘテロ構造 / ナノ構造 / 光電変換 |
Outline of Research at the Start |
低コスト多接合太陽電池の実現に不可欠な赤外領域で発電できるセル(ボトムセル)の研究開発は、世界的にも殆ど進展していない。そこで、われわれは、PbSコロイド量子ドットとZnOナノワイヤの混合層を特徴とするヘテロ接合太陽電池を研究し、ヘテロ接合界面のバンド構造制御が、赤外光電変換の高効率化の根幹的課題であることを明らかにした。 本研究では、この課題を解決するために、キャリア輸送に強く影響するコロイド量子ドッ ト表面の配位子やZnO表面構造、量子ドットとZnOナノワイヤの形状・サイズ、混合状態に着目し、ヘテロ接合領域や量子ドット層のバンド構造とキャリア輸送特性を明らかにする。
|
Outline of Final Research Achievements |
To improve the infrared spectral sensitivity of a solar cell in which a mixture active layer is prepared by filling PbS colloidal quantum dots to completely encapsulate ZnO nanowires (NWs) on a transparent conductive substrate and an Au electrode is deposited on top of it. The electronic structure of the mixed active layer was clarified and its quality was improved. As a factor for the high infrared spectral sensitivity and high durability of this solar cell, we elucidated that the electronic structure of the mixture active layer has an energy barrier that prevents electrons in the ZnO NWs from diffusing to the Au electrode. Defects of ZnO NWs and electron-lattice interactions that affect carrier transport were investigated by emission spectroscopy, and it was found that annealing at 500°C under oxygen is effective in reducing defects. By utilizing mixed active layers, we succeeded in achieving high efficiency in solar cells using infrared absorbing nanocrystals.
|
Academic Significance and Societal Importance of the Research Achievements |
地球温暖化対策の一つとして、太陽光発電の大規模導入が急務であり、既存の設置環境に加え、車輛など設置面積の制約が強い用途にも、普及させなければならない。これを実現するためには、単接合セルの理論限界(約30%)を凌駕する超効率太陽電池を安価に作製することが不可欠である。コロイド量子ドットは、合成条件を整えると、太陽光スペクトルのほぼ全領域を吸収できるようになる。また、低コストの低温溶液プロセスでのセル作製が可能であり、超高効率と低コストの両立を目指した次世代太陽電池の有望な材料である。本研究成果は、これらの有望な材料で超効率太陽電池を構築するための、基礎科学を提供すること。
|