Project/Area Number |
19H02540
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28020:Nanostructural physics-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology (2021-2022) University of Tsukuba (2019-2020) |
Principal Investigator |
Tsujimoto Manabu 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (20725890)
|
Co-Investigator(Kenkyū-buntansha) |
柏木 隆成 筑波大学, 数理物質系, 講師 (40381644)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥10,790,000 (Direct Cost: ¥8,300,000、Indirect Cost: ¥2,490,000)
|
Keywords | 高温超伝導体 / 固有ジョセフソン接合 / 超伝導量子デバイス / テラヘルツ波 / レーザー発振 |
Outline of Research at the Start |
高温超伝導体のナノ構造である固有ジョセフソン接合を光共振器と結合させ、高温超伝導体でのみ実現可能なテラヘルツ帯の超伝導レーザー発振を実証する。これにより、長年の課題であったテラヘルツ波放射の高強度化と高コヒーレント化を達成する。超伝導レーザーの発振原理を実験的に解明し、従来の光学的レーザーとの違いについて考究する。また、近年需要の高い小型テラヘルツ光源としての応用を見据えた素子の潜在性能を評価する。
|
Outline of Final Research Achievements |
In this study, I investigated terahertz laser emission using high-temperature superconducting Josephson junctions coupled to external optical resonators. The first part focused on studying the inhomogeneity of single-crystal mesas and the synchronization of intrinsic junctions. Small inhomogeneities were found to enable high-intensity terahertz wave emission, offering valuable design guidelines for high-performance devices. In the second part, I explored the electromagnetic coupling between superconducting mesas and external planar microstrip resonators. The experiments demonstrated wide frequency tunability in devices connected to triangular patch resonators, although high-efficiency oscillation was not observed. Overall, this study enhances our understanding of terahertz laser emission and provides insights into optimizing device performance through design guidelines and control methods.
|
Academic Significance and Societal Importance of the Research Achievements |
量子状態の操作や読み出しに最適な超伝導素子は、量子計算に限らず微小信号計測などの基本素子として、最先端の科学技術基盤の形成に貢献している。最近、ジョセフソン接合素子を用いたレーザー発振が報告されており、本研究の実施はこうした新しい用途の超伝導素子の誕生につながることが期待される。発振可能な1テラヘルツ付近の電磁波は光と電波の特徴を合わせ持ち、非破壊イメージングや高速無線通信、センシングなどの身近な技術への応用が注目されている。このように、超伝導レーザーは画期的なテラヘルツ波の発生方法であり、学術的な新規性や創造性に優れるだけでなく、社会利便性の向上にも貢献するものと考えている。
|