Project/Area Number |
19H02614
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Murakami Hisashi 東京農工大学, 工学(系)研究科(研究院), 准教授 (90401455)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2019: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
|
Keywords | 結晶成長 / エピタキシャル成長 / 窒化物半導体 / 混晶 / 窒化ガリウム / トリハライド / 低転位 / 加工サファイア基板 / 窒化アルミニウムガリウム / ヘテロ界面 / ワイドバンドギャップ |
Outline of Research at the Start |
III族窒化物半導体(BN, AlN, GaN, InNおよびそれらの混晶AlxGa1-xN等)の持つ優れた物性は、既に実用化された高輝度白色LEDや短波長レーザダイオードのみならず、地球規模で取り組むべき創・省エネルギーに貢献するパワー半導体素子、太陽電池用材料としての応用にも極めて高いポテンシャルを秘めている。本研究では、固体塩化物の比較的高い蒸気圧を活用し、塩化物原料を気化させ用いる新規気相成長法により、大きな成長速度が必要となる基板結晶の作製から、積層構造の急峻な界面制御が必要となるデバイス構造の作製までを単一の結晶成長装置で作製可能とする手法を確立する。
|
Outline of Final Research Achievements |
A solid source tri-halide vapor phase epitaxy (THVPE) method that has the advantages of conventional THVPE method with its extremely high growth rate and the concept of metal organic vapor phase epitaxy (MOVPE), a method for device fabrication, to establish a method to simultaneously achieve a fast growth mode for fabricating GaN seed substrates and an ultra-slow growth mode for GaN/AlGaN-based thin film devices was proposed. I achieved thick GaN film growth on patterned sapphire substrates (PSS) and multilayered GaN/AlGaN thin crystals, and demonstrated the possibility of simultaneous substrate fabrication and device fabrication by solid source THVPE in the same equipment.
|
Academic Significance and Societal Importance of the Research Achievements |
GaN系のレーザダイオードやトランジスタは、HVPE等の成長速度の大きい結晶成長手法で土台となる基板(ウエハ)を作製し、その上にMOVPE等の成長速度の精密制御が可能で、多種の薄膜作製が可能な結晶成長手法でデバイス構造を作製する。本研究では、固体原料の飽和蒸気圧を利用して気化させた金属三塩化物を結晶成長炉内に導入することを可能とし、HVPE、MOVPEの両方の利点が得られる結晶成長手法を確立した。金属三塩化物とアンモニアの反応機構やGaN系結晶の成長挙動の学術的知見に加え、単一プロセスで従来のデバイス構造が作製可能であることを示したことは産業的・社会的に意義が大きい成果と考える。
|