Emergence and control of metal-insulator transition in rutile-type d1 electron system
Project/Area Number |
19H02620
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Shibuya Keisuke 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (00564949)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2021: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2020: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥10,010,000 (Direct Cost: ¥7,700,000、Indirect Cost: ¥2,310,000)
|
Keywords | 金属絶縁体転移 / ルチル型遷移金属酸化物 / 二酸化バナジウム / 二酸化ニオブ / ルチル型酸化物 / 遷移金属酸化物 / ルチル構造 |
Outline of Research at the Start |
ルチル型酸化物VO2が室温以上で示す金属絶縁体転移が注目されており、その原理解明に向けた研究が展開されている。金属絶縁体転移の原理を解明する基礎研究と、優れたデバイス材料を開発する実用化研究との両面から、金属絶縁体転移を示す新物質の探索が求められている。そこで本研究では、VO2(3d1)と同様のd1電子配置をもつNbO2(4d1)とTaO2(5d1)のエピタキシャル薄膜を作製し、金属絶縁体転移を中心とした物性を明らかにする。3d1-5d1の電子配置をもつルチル型遷移金属酸化物の物性を系統的に理解することで、d1電子系における金属絶縁体転移の原理解明とその転移温度の制御を目指す。
|
Outline of Final Research Achievements |
Epitaxial thin films of rutile-type niobium dioxide (NbO2) were fabricated, and the electronic and optical properties of the films were examined. The NbO2 films exhibited a transition temperature of 1080 K, almost equivalent to that of single crystals. Three phonon modes corresponding to the Nb-Nb dimer were found in the low-temperature phase of NbO2 from the angular-dependent polarized Raman spectra. The electronic state of NbO2 was determined using a spectroscopic ellipsometer. It was found that the electronic band structure of NbO2 is very similar to that of vanadium dioxide (VO2). The both materials in the rutile-type d1 electron system have similar crystal structure, phonon modes, and electronic band structures in their low-temperature phase.
|
Academic Significance and Societal Importance of the Research Achievements |
二酸化バナジウムは室温付近340Kで金属絶縁体転移を示すため、メモリ・センサ・スイッチなどの電子・光デバイスへの応用が期待されている材料である。二酸化ニオブは、二酸化バナジウムよりも高温の1080Kで相転移を示すため、デバイス動作の安定化に資するものと期待されている。本研究で明らかとなった二酸化バナジウムと二酸化ニオブの特性の理解は、強相関電子系における相転移温度制御手法と物質設計技術の発展に貢献するものと考える。
|
Report
(4 results)
Research Products
(4 results)