• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of Classification System of Wood Species by Cognitive Spectroscopy

Research Project

Project/Area Number 19H03015
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 40020:Wood science-related
Research InstitutionNagoya University

Principal Investigator

Tsuchikawa Satoru  名古屋大学, 生命農学研究科, 教授 (30227417)

Co-Investigator(Kenkyū-buntansha) 稲垣 哲也  名古屋大学, 生命農学研究科, 准教授 (70612878)
Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥14,820,000 (Direct Cost: ¥11,400,000、Indirect Cost: ¥3,420,000)
Fiscal Year 2021: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥10,530,000 (Direct Cost: ¥8,100,000、Indirect Cost: ¥2,430,000)
Keywords近赤外分光法 / ハイパースペクトラル画像 / CNN / 認識科学分析手法 / 樹種判別 / ディープラーニング / 可視・近赤外 / 分光分析 / ハイパースぺクトラル画像
Outline of Research at the Start

可視(電子励起)・近赤外(振動励起)スペクトルの形状そのものを情報源として活用し、コグニティブ(認識)スペクトロスコピーとも呼ぶべき新たな分析手法を構築し樹種判別を正確・迅速・簡便に行う。木材の可視・近赤外分光情報を包含したシームレスなハイパースペクトラルデータを利用して、樹種判別を自動で行えるプロトコル構築を目指す。

Outline of Final Research Achievements

In this research, "Deep learning, which is machine learning using a multi-layered neural network, was applied to visible/near-infrared seamless hyperspectral data of wood, and a protocol that can automatically discriminate wood species is constructed and cognitive. The goal is to establish a new cognitive science analysis method that can be called a spectroscopic copy.
When tree species were discriminated using CNN based on visible images and near-infrared hyperspectral images of 38 hardwood species, the correct answer rate when using near-infrared images reached 90.5%. This made it possible to show the possibility of a new cognitive chemical analysis method of "analyzing molecular vibration information on the sample surface and its spatial distribution by CNN".

Academic Significance and Societal Importance of the Research Achievements

本手法によって近赤外領域・可視領域両方での木材樹種判別の可能性を示した。顕微鏡写真からのバッチ抽出およびトレインデータ・テストデータの選択方法によって樹種判別の推定精度が大きく異なることが明らかとなった。以上一連の研究によって本手法の木材樹種判別への有効性および限界を確認した。また提案手法を様々な農産物評価にも応用し、その有用性を確認した。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (19 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (8 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 8 results) Presentation (6 results) (of which Int'l Joint Research: 2 results) Book (1 results)

  • [Int'l Joint Research] ベトナム林業研究所(ベトナム)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] KMITL(タイ)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Northwest A&F University(中国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Northwest A&F University(中国)

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples2022

    • Author(s)
      Onmankhong Jiraporn、Ma Te、Inagaki Tetsuya、Sirisomboon Panmanas、Tsuchikawa Satoru
    • Journal Title

      Infrared Physics & Technology

      Volume: 123 Pages: 104100-104100

    • DOI

      10.1016/j.infrared.2022.104100

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Measuring the tensile strain of wood by visible and near-infrared spatially resolved spectroscopy2021

    • Author(s)
      Ma Te、Inagaki Tetsuya、Yoshida Masato、Ichino Mayumi、Tsuchikawa Satoru
    • Journal Title

      Cellulose

      Volume: 28 Issue: 17 Pages: 10787-10801

    • DOI

      10.1007/s10570-021-04239-1

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Near-infrared spectroscopy and hyperspectral imaging can aid in the prediction and mapping of polyploid acacia hybrid wood properties in tree improvement programs2021

    • Author(s)
      Viet Dang Duc、Ma Te、Inagaki Tetsuya、Kim Nguyen Tu、Tsuchikawa Satoru
    • Journal Title

      Holzforschung

      Volume: 75 Issue: 12 Pages: 1067-1080

    • DOI

      10.1515/hf-2021-0024

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Moisture transport dynamics in wood during drying studied by long-wave near-infrared hyperspectral imaging2021

    • Author(s)
      Ma Te、Morita Genki、Inagaki Tetsuya、Tsuchikawa Satoru
    • Journal Title

      Cellulose

      Volume: 29 Issue: 1 Pages: 133-145

    • DOI

      10.1007/s10570-021-04290-y

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach2021

    • Author(s)
      Ma Te、Xia Yu、Inagaki Tetsuya、Tsuchikawa Satoru
    • Journal Title

      Postharvest Biology and Technology

      Volume: 174 Pages: 111440-111440

    • DOI

      10.1016/j.postharvbio.2020.111440

    • Related Report
      2021 Annual Research Report 2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis?NIR spatially resolved spectroscopy2021

    • Author(s)
      Ma Te、Xia Yu、Inagaki Tetsuya、Tsuchikawa Satoru
    • Journal Title

      Postharvest Biology and Technology

      Volume: 173 Pages: 111417-111417

    • DOI

      10.1016/j.postharvbio.2020.111417

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach2020

    • Author(s)
      Ma Te、Tsuchikawa Satoru、Inagaki Tetsuya
    • Journal Title

      Computers and Electronics in Agriculture

      Volume: 177 Pages: 105683-105683

    • DOI

      10.1016/j.compag.2020.105683

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Cognitive spectroscopy for wood species identification: near infrared hyperspectral imaging combined with convolutional neural networks2019

    • Author(s)
      Hideaki Kanayama, Te Ma,Tetsuya Inagaki,Satoru Tsuchikawa
    • Journal Title

      Analyst

      Volume: 144 Issue: 21 Pages: 6436-6446

    • DOI

      10.1039/c9an01180c

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] 近赤外分光イメージングによる白イチゴの糖度分布可視化2021

    • Author(s)
      関 隼人,村上温子、馬 特,土川 覚,稲垣哲也
    • Organizer
      第37回近赤外フォーラム
    • Related Report
      2021 Annual Research Report
  • [Presentation] Deep learning approach of visible microscopic and NIR macroscopic image for wood species classification2021

    • Author(s)
      木村 文哉、馬 特、土川覚、稲垣哲也
    • Organizer
      The 20th International Conference on NIR
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Identification of Acacia clones wood using Nearinfrared hyperspectral imaging and deep learning method2021

    • Author(s)
      Dang Duc Viet, Te Ma, Tetsuya Inagaki, Nguyen Tu Kim, Satoru Tsuchikawa
    • Organizer
      The 20th International Conference on NIR
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] NIR-HSIのディープラーニング認識_コマツナ種子の発芽予測精度について2020

    • Author(s)
      馬 特、稲垣哲也、土川 覚
    • Organizer
      第36回近赤外フォーラム
    • Related Report
      2020 Annual Research Report
  • [Presentation] ディープラーニング(深層学習)による日本産広葉樹の樹種判別2020

    • Author(s)
      木村 文哉、馬 特、土川覚、稲垣哲也
    • Organizer
      第71回日本木材学会大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] NIR-HSI の DL 認識 コマツナ種子の発芽評価2019

    • Author(s)
      稲垣哲也,高橋華子,金山英誠,土川 覚
    • Organizer
      第35回近赤外フォーラム
    • Related Report
      2019 Annual Research Report
  • [Book] 月刊画像ラボ2020

    • Author(s)
      馬特、稲垣哲也、土川覚
    • Total Pages
      5
    • Publisher
      日本工業出版
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi