Gradient environment-type biogas production system with an electron transfer control mechanism for microorganisms
Project/Area Number |
19H03080
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 41040:Agricultural environmental engineering and agricultural information engineering-related
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
TOJO SEISHU 東京農工大学, (連合)農学研究科(研究院), 教授 (40155495)
|
Co-Investigator(Kenkyū-buntansha) |
帖佐 直 東京農工大学, (連合)農学研究科(研究院), 准教授 (10355597)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2021: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥8,450,000 (Direct Cost: ¥6,500,000、Indirect Cost: ¥1,950,000)
|
Keywords | 環境傾度型発酵槽 / 水素発酵 / メタン発酵 / pHギャップ / 微生物電解セル / 光合成水素生成菌 / 加圧熱水処理 / COD / 環境傾度型バイオガス生産システム / 電気化学的制御 / バイオフィルム / バイオマス / 発酵廃液の還流 / 細菌の優占化 / 水素収率 / 電気化学技術 / 嫌気性水素生成細菌 / 光合成水素生成細菌 / 環境傾度型発酵システム / pH安定化 / 基質投入分散化 / 電子伝達制御機構 |
Outline of Research at the Start |
本申請研究は、温度やpHを部分的に制御する環境傾度型発酵槽を用いて、水素発酵とメタン発酵の双方に最適条件を提供しつつ、関連菌群に強固な微生物ネットワークを形成させることで原料の分解性を高め、高効率なバイオガス生産を実現しようとするものである。微生物電解セル(MEC)は外部電源から微小な電位差を印加することで、発酵液から水素を生成する技術で、pH制御にも応用できる。本申請研究では、MECを付加した環境傾度型発酵システムについて、収集データの機械学習を基に主たる制御因子を明らかにして制御アルゴリズムを構築し、総体として低環境負荷・高効率のバイオガス生産を目標としている。
|
Outline of Final Research Achievements |
In the biogas production using organic waste as a raw material, two different gradient environment-type fermenters were investigated to improve the connectivity between the microbial communities involved in hydrogen fermentation and methane fermentation and their optimum pH ranges. For relatively low concentration substrates, two-phase hydrogen fermentation, which periodically changes the dark period and light period conditions, can continue hydrogen production with stable pH range. For high concentration substrate, hydrogen-methane two-stage fermentation is effective, and the optimum pH gap in the transition process from hydrogen fermentation to methane fermentation can be adjusted by using the electron transfer control of the microbial electrolysis cell.
|
Academic Significance and Societal Importance of the Research Achievements |
環境傾度型発酵槽は、光や温度の環境条件を人為的に変化させることで水素やメタン等のバイオガス生産に関わる発酵の高速化と高効率化を目指す発酵システムである。発酵の高速化が可能な水素発酵では、明発酵と暗発酵を周期的に組み合わせた水素二相発酵が有効との結果が示された。高濃度原料に有用な水素-メタン二段発酵では、そのpH調節に電子伝達制御機能を有する微生物電解セルが利用できることが示され、化学薬品に依存しないバイオガス生産システムの運用の見通しが得られた。
|
Report
(4 results)
Research Products
(7 results)