• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

RNA secondary structure prediction using nanopore sequencers

Research Project

Project/Area Number 19H04210
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 62010:Life, health and medical informatics-related
Research InstitutionTokyo Denki University (2021-2022)
Keio University (2019-2020)

Principal Investigator

Sato Kengo  東京電機大学, システム デザイン 工学部, 教授 (20365472)

Co-Investigator(Kenkyū-buntansha) 加藤 有己  大阪大学, 大学院医学系研究科, 准教授 (10511280)
河原 行郎  大阪大学, 大学院医学系研究科, 教授 (80542563)
Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥13,260,000 (Direct Cost: ¥10,200,000、Indirect Cost: ¥3,060,000)
Fiscal Year 2021: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Keywordsバイオインフォマティクス / RNA二次構造 / ナノポアシークエンサー / RNA修飾 / 深層学習
Outline of Research at the Start

本研究では,RNAの構造と機能の網羅的な相関解析へ向けて,その基盤となるRNA二次構造決定のための新しい技術を開発する.具体的には,RNA二次構造特異的な化学修飾を引き起こす化合物でRNA配列を処理し,ナノポアシークエンサーでその化学修飾を直接読み取ることによって二次構造プロファイルを計測する方法を確立する.また,得られた二次構造プロファイルをRNA二次構造予測に利用することによって予測精度の劇的な向上を目指す.

Outline of Final Research Achievements

We established a method to measure secondary structure profiles by treating RNA sequences with compounds that induce chemical modifications specific to RNA secondary structures and directly reading the chemical modifications with a nanopore sequencer. We developed MXfold2, a deep learning method for RNA secondary structure prediction, and achieved the world's highest accuracy. Furthermore, we implemented a method to predict the RNA secondary structure that fits the reactivity of the chemical modification specific to the RNA secondary structure as much as possible.

Academic Significance and Societal Importance of the Research Achievements

RNAの構造と機能の網羅的な相関解析に期待が集まっている.ここでの基盤技術であるRNA二次構造決定法の多くは,RNAの構造に大きな影響を与えるRNA修飾の存在を無視しており,特に配列長が長く塩基修飾が含まれているRNA配列に関して未だに十分な予測精度とは言えない.エピトランスクリプトームを意識したRNAの構造と機能の網羅的な相関解析へ向けて,RNA修飾を考慮した二次構造予測を実現し,予測精度を改善することが最重要な課題となっている.本研究の成果はこの課題を克服するための基盤となる技術である.

Report

(4 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (11 results)

All 2022 2021 2020 2019 Other

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 6 results) Presentation (3 results) (of which Int'l Joint Research: 2 results) Remarks (2 results)

  • [Journal Article] Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots2022

    • Author(s)
      Akiyama Manato、Sakakibara Yasubumi、Sato Kengo
    • Journal Title

      Genes

      Volume: 13 Issue: 11 Pages: 2155-2155

    • DOI

      10.3390/genes13112155

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Max-Margin Model for Predicting Residue-Base Contacts in Protein-RNA Interactions2021

    • Author(s)
      Kashiwagi Shunya、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      Life

      Volume: 11 Issue: 11 Pages: 1135-1135

    • DOI

      10.3390/life11111135

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prediction of RNA secondary structure including pseudoknots for long sequences2021

    • Author(s)
      Sato Kengo、Kato Yuki
    • Journal Title

      Briefings in Bioinformatics

      Volume: 23 Issue: 1

    • DOI

      10.1093/bib/bbab395

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] RNA secondary structure prediction using deep learning with thermodynamic integration2021

    • Author(s)
      Sato Kengo、Akiyama Manato、Sakakibara Yasubumi
    • Journal Title

      Nature Communications

      Volume: 12 Issue: 1 Pages: 941-941

    • DOI

      10.1038/s41467-021-21194-4

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Web Server for Designing Molecular Switches Composed of Two Interacting RNAs2021

    • Author(s)
      Taneda Akito、Sato Kengo
    • Journal Title

      International Journal of Molecular Sciences

      Volume: 22 Issue: 5 Pages: 2720-2720

    • DOI

      10.3390/ijms22052720

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data2020

    • Author(s)
      Jayakumar Vasanthan、Ishii Hiromi、Seki Misato、Kumita Wakako、Inoue Takashi、Hase Sumitaka、Sato Kengo、Okano Hideyuki、Sasaki Erika、Sakakibara Yasubumi
    • Journal Title

      BMC Genomics

      Volume: 21 Issue: S3 Pages: 243-243

    • DOI

      10.1186/s12864-020-6657-2

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 深層強化学習を用いた二次構造に基づくRNA配列の設計2020

    • Author(s)
      Yuki Hotta, Yasubumi Sakakibara and Kengo Sato
    • Organizer
      第9回生命医薬情報学連合大会(IIBMP2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2020

    • Author(s)
      Akiyama, M., Sato, K., Sakakibara, Y.
    • Organizer
      Noncoding RNAs: Mechanism,Function and Therapies, Keystone Symposia
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2019

    • Author(s)
      Akiyama, M., Sato, K., Sakakibara, Y.
    • Organizer
      RNA Informatics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Remarks] MXfold2 Server

    • URL

      http://www.dna.bio.keio.ac.jp/mxfold2/

    • Related Report
      2020 Annual Research Report
  • [Remarks] RNA二次構造予測で世界最高精度を達成

    • URL

      https://www.keio.ac.jp/ja/press-releases/2021/2/12/28-78076/

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi