Epileptic activity through excitatory/inhibitory imbalance observed in neuronal networks cultured on micro-electrode arrays
Project/Area Number |
19H04437
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 90110:Biomedical engineering-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Jimbo Yasuhiko 東京大学, 大学院工学系研究科(工学部), 教授 (20372401)
|
Co-Investigator(Kenkyū-buntansha) |
榛葉 健太 東京大学, 大学院工学系研究科(工学部), 助教 (80792655)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2021: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2020: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
|
Keywords | 脳神経 / 細胞・組織 / 神経工学 / 微小電極アレイ / 脳・神経 / 脳神経疾患 / シグナル伝達 / ナノバイオ |
Outline of Research at the Start |
生涯に一度はてんかん発作を発症する割合は世界人口の1 %,そのうち1/3が難治性に移行するとされている.現行の抗てんかん薬開発は,発生した発作の抑制を目指しており,最初の発作が発生することを防ぐ視点からの研究はほとんど行われていない.本研究では「興奮性/抑制性の不均衡が生じることがてんかん発作を生じる本質である」という考え方に基づき,興奮性/抑制性バランスを人為的に制御した神経回路をin vitro系に構成し,てんかん発作を生じる臨界条件の解明を目指す.てんかん発作につながる本質的な要素を神経回路,神経細胞,シナプス,受容体それぞれのレベルで明らかにすることを目的とする.
|
Outline of Final Research Achievements |
Focusing on the excitatory/inhibitory (E/I) balance of neuronal circuits, which is considered to be the "final common path" in the process of epileptic seizure generation, we constructed cultured neuronal networks with artificially controlled E/I balance and recorded electrical activity using micro-electrode array (MEA) substrates. Pharmacological manipulation (administration of agonists and antagonists to the SHH pathway) during the differentiation of mouse iPS cells into cortical cells enabled control of the ratio of excitatory cells in the range of 50-80%, and E/I balance-dependent changes in synchronized burst activity characteristics were observed. The experimental results suggest that activity-dependent plasticity as well as homeostatic plasticity may be involved in the regulation of synaptic strength, which affects the network-activity properties.
|
Academic Significance and Societal Importance of the Research Achievements |
EIバランスと神経回路活動の関係は,興奮性/抑制性シナプス結合の数とその強度によって制御されるが,電気刺激等人工的な手法で誘起されるシナプス活動と本来の感覚入力に対して活性化されるシナプスは異なる,興奮性シナプス,抑制性シナプス,そのサブタイプそれぞれにおいて可塑性のメカニズムが異なるなど関係する要素は多岐にわたる.本研究では恒常性を維持する可塑性の関与を示唆する結果が得られた.今後は,シナプス-ニューロン-神経回路という階層構造各段階における制御機構,その背景となる可塑性の作用を統合した研究の遂行により,てんかん発作を生じるメカニズム解明に向けた知見が得られることが期待できる.
|
Report
(4 results)
Research Products
(12 results)