• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Building a formulation platform for surgical knowledge using sparse modeling

Research Project

Project/Area Number 19H04484
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 90130:Medical systems-related
Research InstitutionKyoto University

Principal Investigator

Nakao Megumi  京都大学, 医学研究科, 教授 (10362526)

Co-Investigator(Kenkyū-buntansha) 上田 順宏  奈良県立医科大学, 医学部, 学内講師 (40571005)
今井 裕一郎  奈良県立医科大学, 医学部, 研究員 (80347567)
松田 哲也  京都大学, 情報学研究科, 教授 (00209561)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥15,210,000 (Direct Cost: ¥11,700,000、Indirect Cost: ¥3,510,000)
Fiscal Year 2023: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2020: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Keywords機械学習 / スパースモデリング / 手術計画 / 下顎骨再建 / 医用人工知能
Outline of Research at the Start

本研究の目的は,外科医の医学知識や経験を体系化し,外科医自身の新たな洞察や知識の獲得に資する機械学習方法と情報システムの探究である.患者個人の三次元医用画像と医師による手術計画,臨床医学用語間の関係を記述する外科手術コーパスの概念を提案する.スパースモデリングの数理に基づいて手術計画の機序をデータ駆動型で定式化し,患者固有の計画を自動生成する枠組みの構築を目指す.

Outline of Final Research Achievements

This study explored machine learning methods and an information platform that formulates surgeons' medical knowledge and experience and contributes to the acquisition of new knowledge. In particular, we aimed to construct a sparse modeling framework that can objectively and automatically formulate surgical procedures from surgical planning database. We collected surgical planning data of mandibular reconstruction from 696 cases from different institutions, and developed a Lasso enumeration algorithm for multi-class classification to analyze important features for the surgical planning. We also developed a sparse deep causal inference model based on graph neural networks to analyze the causality between surgical planning, image features obtained from 3D medical images, and clinical terms in mandibular reconstruction surgery.

Academic Significance and Societal Importance of the Research Achievements

本研究は個人の知識や技術への要求が高い外科学分野を対象にスパースモデリングの数理,データ科学の概念を導入し,外科学知識の定式化を目指した.異なる施設に所属する複数の外科医の協力を得て,多施設間研究として手術計画に共通に見られる法則と差異の抽出,手術計画に重要となる多次元特徴量の解析を実施した.また,機械学習モデルの推論に至る機序の明確化,ホワイトボックス化の課題に対して,本研究では統計的因果探索に基づく機械学習モデルを開発してアプローチしており,推論機序の可視化を実現する機械学習プラットフォーム構築の事例とみなすこともできる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (35 results)

All 2024 2023 2022 2021 2020 2019 Other

All Journal Article (9 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 9 results,  Open Access: 8 results) Presentation (23 results) (of which Int'l Joint Research: 6 results,  Invited: 4 results) Remarks (3 results)

  • [Journal Article] Medical Image Synthesis and Statistical Reconstruction Methods2023

    • Author(s)
      Megumi Nakao
    • Journal Title

      Advanced Biomedical Engineering

      Volume: 12 Issue: 0 Pages: 21-27

    • DOI

      10.14326/abe.12.21

    • ISSN
      2187-5219
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Shape reconstruction for undetectable regions of abdominal organs based on a graph convolutional network2023

    • Author(s)
      Z. Wang, M. Nakao, M. Nakamura, T. Matsuda
    • Journal Title

      Expert Systems With Applications

      Volume: 15 Pages: 120593-120593

    • DOI

      10.1016/j.eswa.2023.120593

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Image-to-Graph Convolutional Network for 2D/3D Deformable Model Registration of Low-Contrast Organs2022

    • Author(s)
      Megumi Nakao, Mitsuhiro Nakamura, Tetsuya Matsuda
    • Journal Title

      IEEE Trans. Med. Imaging

      Volume: 41 Issue: 12 Pages: 3747-3761

    • DOI

      10.1109/tmi.2022.3194517

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Computed Tomography slice interpolation in the longitudinal direction based on deep learning techniques: To reduce slice thickness or slice increment without dose increase2022

    • Author(s)
      Wu Shuqiong、Nakao Megumi、Imanishi Keiho、Nakamura Mitsuhiro、Mizowaki Takashi、Matsuda Tetsuya
    • Journal Title

      PLOS ONE

      Volume: 17 Issue: 12 Pages: 1-18

    • DOI

      10.1371/journal.pone.0279005

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Deformation analysis of surface and bronchial structures in intraoperative pneumothorax using deformable mesh registration2021

    • Author(s)
      Nakao Megumi、Kobayashi Kotaro、Tokuno Junko、Chen-Yoshikawa Toyofumi、Date Hiroshi、Matsuda Tetsuya
    • Journal Title

      Medical Image Analysis

      Volume: 73 Pages: 102181-102181

    • DOI

      10.1016/j.media.2021.102181

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Statistical deformation reconstruction using multi-organ shape features for pancreatic cancer localization2021

    • Author(s)
      Nakao Megumi、Nakamura Mitsuhiro、Mizowaki Takashi、Matsuda Tetsuya
    • Journal Title

      Medical Image Analysis

      Volume: 67 Pages: 101829-101829

    • DOI

      10.1016/j.media.2020.101829

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Kernel-based framework to estimate deformations of pneumothorax lung using relative position of anatomical landmarks2021

    • Author(s)
      Yamamoto Utako、Nakao Megumi、Ohzeki Masayuki、Tokuno Junko、Chen-Yoshikawa Toyofumi Fengshi、Matsuda Tetsuya
    • Journal Title

      Expert Systems with Applications

      Volume: 183 Pages: 115288-115288

    • DOI

      10.1016/j.eswa.2021.115288

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Regularized Three-Dimensional Generative Adversarial Nets for Unsupervised Metal Artifact Reduction in Head and Neck CT Images2020

    • Author(s)
      M. Nakao, K. Imanishi, N. Ueda, Y. Imai, T. Kirita, T. Matsuda
    • Journal Title

      IEEE Access

      Volume: 8 Pages: 109453-109453

    • DOI

      10.1109/access.2020.3002090

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Resection Process Map: A novel dynamic simulation system for pulmonary resection2020

    • Author(s)
      Tokuno Junko、Chen-Yoshikawa Toyofumi F.、Nakao Megumi、Matsuda Tetsuya、Date Hiroshi
    • Journal Title

      The Journal of Thoracic and Cardiovascular Surgery

      Volume: 159 Issue: 3 Pages: 1130-1138

    • DOI

      10.1016/j.jtcvs.2019.07.136

    • NAID

      120006810863

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 画像分類における深層因果探索モデルの検討2024

    • Author(s)
      元田 凌平, 中尾 恵
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2023 Annual Research Report
  • [Presentation] 視覚情報のみから手術鉗子による臓器加圧程度を推定する検討2024

    • Author(s)
      増井 仁彦, 粂 直人, 中尾 恵, 曲渕 敏博, 濵田 彬弘, 澤田 篤郎, 小林 恭
    • Organizer
      日本生体医工学会 生体画像と医用人工知能研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Construction of Shape Atlas for Abdominal Organs using Three-Dimensional Mesh Variational Autoencoder2023

    • Author(s)
      Ryuichi Umehara, Mitsuhiro Nakamura, Megumi Nakao
    • Organizer
      Annu Int Conf IEEE Eng Med Biol Soc .
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 階層的潜在変数を用いたMeshVAEによる臓器形状アトラスの構築2023

    • Author(s)
      梅原 隆一, 中村 光宏, 中尾 恵
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2023 Annual Research Report
  • [Presentation] 3次元メッシュ変分オートエンコーダーを用いた臓器形状アトラスの構築2023

    • Author(s)
      梅原 隆一, 中村 光宏, 中尾 恵
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2023 Annual Research Report
  • [Presentation] 医用画像のxR2022

    • Author(s)
      中尾 恵
    • Organizer
      システム制御情報学会 研究発表講演会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] CT画像間の変位場を用いた敵対的データ拡張の試み2022

    • Author(s)
      栗山 由也, 中尾 恵, 中村 光宏
    • Organizer
      第21回情報科学技術フォーラム
    • Related Report
      2022 Annual Research Report
  • [Presentation] Determination of Population-Based Anisotropic Margin for Uterus and Cervix During a Course of Magnetic Resonance-Guided Intensity-Modulated Radiation Therapy2022

    • Author(s)
      Y. Kishigami, M. Nakamura, M. Nakao, H. Okamoto, A. Takahashi, H. Igaki
    • Organizer
      64th AAPM annual meeting
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 子宮頸がんに対する放射線治療における非等方マージンサイズの決定2022

    • Author(s)
      岸上 祐加子, 中村 光宏, 中尾 恵, 岡本 裕之, 高橋 彩加, 井垣 浩
    • Organizer
      日本放射線腫瘍学会第35回学術大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 識別モデルの判断に関わる特徴の深層画像生成による可視化2022

    • Author(s)
      白 優志, 中尾 恵, 松田 哲也
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2022 Annual Research Report
  • [Presentation] Improvement of Image Quality of Cone-beam CT Images by Three-dimensional Generative Adversarial Network2021

    • Author(s)
      T. Hase, M. Nakao, M. Nakamura, T. Matsuda
    • Organizer
      42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Shape Reconstruction for Abdominal Organs based on a Graph Convolutional Network2021

    • Author(s)
      Z. Wang, M. Nakao, M. Nakamura, T. Matsuda
    • Organizer
      42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 非観測領域における生体画像情報の統計的再構成2021

    • Author(s)
      中尾 恵
    • Organizer
      第60回日本生体医工学大会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 下顎骨再建に重要な特徴量群抽出に基づく手術計画モデルの生成2021

    • Author(s)
      永井 一希, 中尾 恵, 上田 順宏, 今井 裕一郎, 畠中 利英, 桐田 忠昭, 松田 哲也
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 下顎骨再建計画に重要な特徴量の複数医師間の解析2021

    • Author(s)
      畑山侑介, 永井一希, 中尾 恵, 松田 哲也
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 外科教育の深化に貢献する VR/AR/XAI 技術2021

    • Author(s)
      中尾 恵
    • Organizer
      VR医学セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Enumerated sparse extraction of important surgical planning features for mandibular reconstruction2020

    • Author(s)
      K. Nagai, M. Nakao, N. Ueda, Y. Imai, T. Kirita, T. Matsuda
    • Organizer
      Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] スパース生体モデリングと治療支援画像生成2020

    • Author(s)
      中尾 恵
    • Organizer
      日本医学物理学会学術大会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 下顎骨再建術を対象とした手術計画に重要な特徴量抽出手法の提案2020

    • Author(s)
      永井 一希, 中尾 恵, 上田 順宏, 今井 裕一郎, 桐田 忠昭, 松田 哲也
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Deep learningによるCT画像の金属アーチファクト低減法‐下顎再建術前シミュレーションへの応用-2019

    • Author(s)
      上田 順宏, 今井 裕一郎, 中尾 恵, 今西 勁峰, 山川 延宏, 柳生 貴裕, 松田 哲也, 桐田 忠昭
    • Organizer
      第64回日本口腔外科学会総会・学術大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Assessment of facial asymmetry after mandibular reconstruction with free fibula flap using computer-aided design2019

    • Author(s)
      N. Ueda, M. Nakao, N. Yamakawa, Y. Nakagawa, Y. Imai, T. Matsuda, T. Kirita
    • Organizer
      7th WORLD CONGRESS of the International Academy of Oral Oncology
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] CycleGANを用いたCT画像における金属アーチファクト低減法2019

    • Author(s)
      中尾 恵, 今西 勁峰, 上田 順宏, 今井 裕一郎, 桐田 忠昭, 松田 哲也
    • Organizer
      電子情報通信学会技術報告 (MI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Lasso解列挙による下顎骨再建計画に重要な特徴量の抽出2019

    • Author(s)
      永井 一希, 中尾 恵, 上田 順宏, 今井 裕一郎, 畠中 利英, 松田 哲也
    • Organizer
      第63回システム制御情報学会 研究発表講演会
    • Related Report
      2019 Annual Research Report
  • [Remarks] 京都大学大学院医学研究科 人間健康科学系専攻 知能医工学分野

    • URL

      https://ibme.hs.med.kyoto-u.ac.jp/

    • Related Report
      2023 Annual Research Report 2022 Annual Research Report
  • [Remarks] 京都大学大学院 医学研究科 人間健康科学系専攻 知能医工学分野

    • URL

      https://ibme.hs.med.kyoto-u.ac.jp/

    • Related Report
      2021 Annual Research Report
  • [Remarks] Research Home

    • URL

      http://www.bme.sys.i.kyoto-u.ac.jp/~meg/

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi