• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Newton-Okounkov 凸体を用いた射影多様体の研究

Research Project

Project/Area Number 19J00123
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Review Section Basic Section 11010:Algebra-related
Research InstitutionKumamoto University (2021)
The University of Tokyo (2019-2020)

Principal Investigator

藤田 直樹  熊本大学, 大学院先端科学研究部(理), 准教授

Project Period (FY) 2019-04-25 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsストリング多面体 / C 型 Gelfand-Tsetlin 多面体 / Gelfand-Tsetlin 簡約語 / Gleizer-Postnikov パス / folding procedure / シューベルト・カルキュラス / Newton-Okounkov 凸体 / ストリング・パラメトリゼーション / Demazure 結晶 / Kogan 面 / クラスター多様体 / トロピカル変異 / 組合せ論的変異 / 弱ファノ多様体
Outline of Research at the Start

Newton-Okounkov 凸体 (NOBY) は代数幾何学およびシンプレクティック幾何学における重要な不変量である. これまでは旗多様体などの良い対称性を持つ多様体に対して, 表現論における結晶基底の理論を用いて NOBY を具体的に記述する研究に取り組んできた.
本研究ではこの記述を通して, 結晶基底の理論を幾何学へ応用する. 具体的にはシューベルト・カルキュラスや Gromov width などの幾何学的不変量の計算を NOBY を用いて行うことを計画している.

Outline of Annual Research Achievements

本研究の目的は結晶基底と Newton-Okounkov 凸体の関係を通して表現論の幾何学への応用を与えることである. 目標としていたウェイト多面体に付随するトーリック多様体の Gromov width を計算することはできなかったが, B 型および C 型ストリング多面体の組合せ論的性質について考察し次の結果を得た.

ストリング多面体の組合せ論的性質は簡約語の取り方に大きく依存し, 簡約語を取り換えた際にストリング多面体はどのように変わるのかが重要な問題となっている. 報告者は Chungbuk National University の Eunjeong Lee 氏および Sungkyunkwan University の Yunhyung Cho 氏との共同研究において, B 型および C 型の場合にこの問題に取り組んだ. 報告者たちは A 型の Gleizer-Postnikov パスに folding procedure を適用することにより, シンプレクティック Gleizer-Postnikov パスの理論を構築した. またこれを用いて B 型および C 型のストリング多面体を記述する無駄のない不等式系を構成した. Littelmann は C 型のある簡約語 (Gelfand-Tsetlin 簡約語) に付随するストリング多面体が C 型 Gelfand-Tsetlin 多面体とユニモジュラー同値であることを見出した. 報告者たちは C 型 Gelfand-Tsetlin 多面体とユニモジュラー同値である C 型ストリング多面体が Gelfand-Tsetlin 簡約語に付随するものに限ることも証明した.

2020年度に行った C 型 Gelfand-Tsetlin 多面体を組合せ論的モデルとするシューベルト・カルキュラスの理論に関する研究をまとめた論文が Advances in Mathematics から出版された.

Research Progress Status

令和3年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和3年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (29 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (23 results) (of which Int'l Joint Research: 13 results,  Invited: 19 results)

  • [Int'l Joint Research] 華中科技大学(中国)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Schubert calculus from polyhedral parametrizations of Demazure crystals2022

    • Author(s)
      Naoki Fujita
    • Journal Title

      Advances in Mathematics

      Volume: 397 Pages: 108201-108201

    • DOI

      10.1016/j.aim.2022.108201

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Newton-Okounkov bodies of flag varieties and combinatorial mutations2021

    • Author(s)
      Naoki Fujita and Akihiro Higashitani
    • Journal Title

      International Mathematics Research Notices

      Volume: ー Issue: 12 Pages: 9567-9607

    • DOI

      10.1093/imrn/rnaa276

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Algebraic and geometric properties of flag Bott-Samelson varieties and applications to representations2020

    • Author(s)
      Naoki Fujita, Eunjeong Lee and Dong Youp Suh
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 309 Issue: 1 Pages: 145-194

    • DOI

      10.2140/pjm.2020.309.145

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Geometry of regular Hessenberg varieties2020

    • Author(s)
      Hiraku Abe, Naoki Fujita, and Haozhi Zeng
    • Journal Title

      Transformation Groups

      Volume: 25 Issue: 2 Pages: 305-333

    • DOI

      10.1007/s00031-020-09554-8

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Polyhedral realizations of crystal bases and convex-geometric Demazure operators2019

    • Author(s)
      Naoki Fujita
    • Journal Title

      Selecta Mathematica

      Volume: 25 Issue: 5

    • DOI

      10.1007/s00029-019-0522-7

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Semi-toric degenerations of Richardson varieties arising from cluster structures on flag varieties I, II2022

    • Author(s)
      Naoki Fujita
    • Organizer
      Ensemble of Algebra and Geometry Seminar
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] クラスター代数とトーリック退化2022

    • Author(s)
      藤田 直樹
    • Organizer
      大阪組合せ論セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Toric degenerations of Schubert varieties arising from cluster structures2022

    • Author(s)
      Naoki Fujita
    • Organizer
      Quantum Groups and Cluster Algebras
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Schubert calculus and string polytopes2022

    • Author(s)
      Naoki Fujita
    • Organizer
      KTH Combinatorics Seminar
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Marked chain-order polytopes as Newton-Okounkov bodies2021

    • Author(s)
      Naoki Fujita
    • Organizer
      Cologne Algebra and Representation Theory Seminar
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Newton-Okounkov polytopes of flag varieties and marked chain-order polytopes2021

    • Author(s)
      藤田 直樹
    • Organizer
      Algebraic Lie Theory and Representation Theory 2021
    • Related Report
      2021 Annual Research Report
  • [Presentation] Semi-toric degenerations of Schubert varieties arising from cluster structures on flag varieties2021

    • Author(s)
      Naoki Fujita
    • Organizer
      Infinite Analysis 21 (IA21) Workshop Around Cluster Algebras
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Semi-toric degenerations of Richardson varieties from cluster algebras2021

    • Author(s)
      Naoki Fujita
    • Organizer
      IBS-CGP Symplectic Monday Seminar
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Newton-Okounkov bodies arising from cluster structures and mutations on polytopes2021

    • Author(s)
      藤田 直樹
    • Organizer
      Legendrians, Cluster algebras, and Mirror symmetry
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to crystal bases I, II / Newton-Okounkov bodies of flag and Schubert varieties I, II2021

    • Author(s)
      藤田 直樹
    • Organizer
      Combinatorics on Flag Varieties and Related Topics 2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to Newton-Okounkov bodies from cluster algebras I, II2021

    • Author(s)
      藤田 直樹
    • Organizer
      QSMS Winter school on mirror symmetry and related topics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] クラスター構造から生じる Newton-Okounkov 凸体と付随するトーリック退化2021

    • Author(s)
      藤田 直樹
    • Organizer
      日本数学会2021年度年会・トポロジー分科会・特別講演
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Combinatorial mutations on representation-theoretic polytopes2020

    • Author(s)
      藤田 直樹
    • Organizer
      組合せ論的表現論の最近の進展
    • Related Report
      2020 Annual Research Report
  • [Presentation] Schubert calculus from polyhedral parametrizations of Demazure crystals2020

    • Author(s)
      藤田 直樹
    • Organizer
      南大阪代数セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Newton-Okounkov bodies arising from cluster structures2020

    • Author(s)
      藤田 直樹
    • Organizer
      Online Algebraic Geometry Seminar
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Newton-Okounkov polytopes of flag varieties and tropicalized cluster mutations2020

    • Author(s)
      藤田 直樹
    • Organizer
      第15回代数・解析・幾何学セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Weak Fano Hessenberg varieties from Richardson varieties2019

    • Author(s)
      藤田 直樹
    • Organizer
      Algebraic Lie Theory and Representation Theory 2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Newton-Okounkov bodies of flag varieties from their cluster structures2019

    • Author(s)
      藤田 直樹
    • Organizer
      Mutations: Mirror Symmetry, Deformations, and Combinatorics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster algebras and Newton-Okounkov bodies I, II, III2019

    • Author(s)
      藤田 直樹
    • Organizer
      Intensive Lecture Series at IBS Center for Geometry and Physics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Recursive constructions of Nakashima-Zelevinsky polytopes2019

    • Author(s)
      藤田 直樹
    • Organizer
      日本数学会2019年度秋季総合分科会・代数学分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Newton-Okounkov bodies of Schubert varieties and tropicalized cluster mutations2019

    • Author(s)
      藤田 直樹
    • Organizer
      Degeneration Techniques in Representation Theory
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification of weak Fano Hessenberg varieties2019

    • Author(s)
      藤田 直樹
    • Organizer
      Hessenberg varieties 2019 in Osaka
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Newton-Okounkov polytopes of flag varieties from cluster algebras2019

    • Author(s)
      藤田 直樹
    • Organizer
      Toric Topology 2019 in Okayama
    • Related Report
      2019 Annual Research Report
    • Invited

URL: 

Published: 2019-05-29   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi