ダンベル型グラフェンナノリボンの電子物性解析に基づく高感度ひずみセンサの開発
Project/Area Number |
19J12755
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Tohoku University |
Principal Investigator |
張 秦強 東北大学, 工学研究科, 特別研究員(DC2)
|
Project Period (FY) |
2019-04-25 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2020: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2019: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | dumbbell-shape / graphene nanoribbon / strain-controlled / Schottky barrier / interface / strain sensor / dumbbell-shape structure / localized properties |
Outline of Research at the Start |
First, developing a new code of simulation techniques for calculating large system. Second, experimental validation of effectiveness of DS-GNR on Si/SiO2 substrate. Third, developing a new method for transferring the patterned DS-GNR from Si/SiO2 substrate to flexible substrate like PDMS.
|
Outline of Annual Research Achievements |
The gradient Schottky barrier around the atomic seamless interface can be controlled by applying appropriate strain and the stable electronic performance of dumbbell-shape graphene nanoribbon (DS-GNR)-base strain sensors can be obtained regardless of the width of the graphene nanoribbon (GNR) in the sensing segment of DS-GNR. The optimized structure of DS-GNR with metallic-metallic interface around the jointed area exhibits stable piezoresistive property in the narrow segment at lower strain range. It is deemed to the disappearance of the Schottky barrier. However, the complicated strain-induced change behavior appeared in the metallic-semiconductive interface due to the existence of the gradient Schottky barrier around the jointed area at low strain range. The single GNR possesses a large strain range as proved by several previous researchers. In this study, the author found that the large gradient Schottky barrier can be minimized by applying an appropriate tensile strain and the stable performance of DS-GNR with metallic-semiconductive interface can be attained at a larger strain range. The analysis results in this study indicate that it has a great potential to apply DS-GNRs for development of highly sensitive, stable, and reliable next-generation wearable strain sensors for real time health monitoring and smart point of care devices. The strain-induced change of electronic properties of DS-GNR can be applied on other specific applications such as bio-chemical sensors for gas- and viruses- detecting and artificial neuro network by mimicking the human synapse signal.
|
Research Progress Status |
令和2年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和2年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(14 results)