• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classification theory of projective varieties by Galois points and new developments

Research Project

Project/Area Number 19K03438
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionYamagata University

Principal Investigator

Fukasawa Satoru  山形大学, 理学部, 准教授 (20569496)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsガロア点 / 自己同型群 / Weierstrass点 / ガロア群 / 射影 / 正標数 / 準ガロア点 / ガロワ点 / Weierstrass 点
Outline of Research at the Start

ガロア点を用いた射影多様体の分類理論を推進し, 他分野との関係の中から新たな発展を創出するという2つを目的とする.
これらの目的において用いられる手法は Weierstrass 点の一般論, 研究代表者の判定法, 正標数代数曲線の分岐理論である. また, 群論的手法も参考にしたい. 研究手法の効果を高める為, 群論と代数幾何関連の図書を購入し, 関連する研究集会に参加する. 新展開創出と他分野の知識吸収の為, 符号理論や有限数学関連の図書を購入し, 関連する研究集会に参加する.
「Workshop on Galois point and related topics」を開催する.

Outline of Final Research Achievements

10 results are obtained. Six of them are posed as follows. (1) A criterion for the existence of non-collinear Galois points (2) A criterion for curves being realized as the Galois closures of two points of a plane curve (3) A connection between the study of Galois points and that of rational functions with small value sets over a finite field (4) Determinations of the automorphism group and the arrangement of Galois points, and elucidation of several properties for a certain elementary abelian p-cover of the Hermitian curve (5) Determinations of the automorphism group and the arrangement of Galois lines for the Artin-Schreier-Mumford curve or the generalized ASM curve (6) Construction of tangentially degenerate curves admitting a separable Gauss map

Academic Significance and Societal Importance of the Research Achievements

ガロア点やガロア直線は曲線の対称性を表現していると考えられます。本研究においては有限体上定義された代数曲線について、ガロア点やガロア直線の配置を明らかにしました。有限体上の代数曲線は符号(例:QRコード)の構成に用いられています。ここに、ガロア点理論と符号理論とのつながりが見えます。また、本研究では「ガロア点研究」と「有限体上の(有理)関数研究」を結びつけました。有限体上の関数や有理関数は、有限幾何や暗号理論において研究されています。付随して得られた「ガウス写像が分離的な接的退化曲線の構成」は、Terraciniの1932年の問題にさかのぼり、90年ものの問題への貢献となります。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (24 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (10 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 10 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 8 results) Remarks (1 results)

  • [Int'l Joint Research] サンパウロ大学/カンピーナス大学(ブラジル)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] サンパウロ大学/カンピーナス大学(ブラジル)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] サンパウロ大学(ブラジル)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] サンパウロ大学(ブラジル)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Algebraic curves admitting non-collinear Galois points2023

    • Author(s)
      Fukasawa Satoru
    • Journal Title

      Rendiconti del Seminario Matematico della Universita di Padova

      Volume: 149 Pages: 183-190

    • DOI

      10.4171/rsmup/114

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Automorphism group, Galois points and lines of the generalized Artin-Schreier-Mumford curve2022

    • Author(s)
      Fukasawa Satoru
    • Journal Title

      Geometriae Dedicata

      Volume: 216 Issue: 2

    • DOI

      10.1007/s10711-022-00679-6

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Algebraic curves admitting the same Galois closure for two projections2022

    • Author(s)
      Satoru Fukasawa, Kazuki Higashine and Takeshi Takahashi
    • Journal Title

      Annali di Matematica Pura ed Applicata (1923-)

      Volume: - Issue: 5 Pages: 2055-2061

    • DOI

      10.1007/s10231-022-01191-0

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Examples of plane curves admitting the same Galois closure for two projections2022

    • Author(s)
      Fukasawa Satoru
    • Journal Title

      Communications in Algebra

      Volume: 50 Issue: 10 Pages: 4188-4190

    • DOI

      10.1080/00927872.2022.2057524

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An elementary abelian p-cover of the Hermitian curve with many automorphisms2022

    • Author(s)
      Borges Herivelto、Fukasawa Satoru
    • Journal Title

      Mathematische Zeitschrift

      Volume: 302 Issue: 2 Pages: 695-706

    • DOI

      10.1007/s00209-022-03083-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Galois lines for the Artin-Schreier-Mumford curve2021

    • Author(s)
      Satoru Fukasawa
    • Journal Title

      Finite Fields and Their Applications

      Volume: 75 Pages: 101894-101894

    • DOI

      10.1016/j.ffa.2021.101894

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Algebraic curves with collinear Galois points2021

    • Author(s)
      Satoru Fukasawa
    • Journal Title

      Nihonkai Mathematical Journal

      Volume: 32 Pages: 71-78

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A birational embedding with two Galois points for quotient curves2021

    • Author(s)
      Fukasawa Satoru、Higashine Kazuki
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 225 Issue: 3 Pages: 106525-106525

    • DOI

      10.1016/j.jpaa.2020.106525

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Examples of plane rational curves with two Galois points in positive characteristic2020

    • Author(s)
      Fukasawa Satoru、Waki Katsushi
    • Journal Title

      Finite Fields and their Applications: Proceedings of the 14th International Conference on Finite Fields and their Applications, Vancouver, June 3-7, 2019

      Volume: - Pages: 181-188

    • DOI

      10.1515/9783110621730-012

    • ISBN
      9783110621730
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Galois points for double-Frobenius nonclassical curves2020

    • Author(s)
      Borges Herivelto、Fukasawa Satoru
    • Journal Title

      Finite Fields and Their Applications

      Volume: 61 Pages: 101579-101579

    • DOI

      10.1016/j.ffa.2019.101579

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Galois points and rational functions with small value sets2022

    • Author(s)
      深澤 知
    • Organizer
      誤り訂正符号と超平面配置の関係とその応用
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Algebraic curves admitting the same Galois closure for two projections2022

    • Author(s)
      Satoru Fukasawa
    • Organizer
      Branched coverings, Degenerations, and Related Topics 2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Galois points and rational functions with small value sets2022

    • Author(s)
      深澤 知
    • Organizer
      2022早稲田整数論研究集会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 代数曲線に対するガロア点を2つもつ判定法とその応用2021

    • Author(s)
      深澤 知
    • Organizer
      日本数学会東北支部会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Artin-Schreier-Mumford 曲線の自己同型群とガロア直線2021

    • Author(s)
      深澤 知
    • Organizer
      代数幾何ミニワークショップ「ガロア点、有限体、代数曲線」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] A birational embedding with two Galois points for quotient curves2019

    • Author(s)
      Satoru Fukasawa
    • Organizer
      The 14th International Conference on Finite Fields and their Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Algebraic curves admitting non-collinear Galois points2019

    • Author(s)
      深澤 知
    • Organizer
      Workshop on Galois point and related topics
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 代数曲線に対するガロア点を2つもつ判定法とその拡張, 応用2019

    • Author(s)
      深澤 知
    • Organizer
      都の西北 代数幾何学シンポジウム 2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 代数曲線に対するガロア点を2つもつ判定法とその拡張, 応用2019

    • Author(s)
      深澤 知
    • Organizer
      第17回代数曲線論シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] 深澤研究室

    • URL

      https://sites.google.com/sci.kj.yamagata-u.ac.jp/fukasawa-lab

    • Related Report
      2022 Annual Research Report 2021 Research-status Report 2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi