• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On normal canonical surfaces and admissible singularities

Research Project

Project/Area Number 19K03446
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKansai University

Principal Investigator

Konno Kazuhiro  関西大学, 総合情報学部, 教授 (10186869)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords一般型代数曲面 / 標準写像 / 正規特異点 / 正規曲面 / 特異点
Outline of Research at the Start

正規標準曲面の構造研究を行う.まず重要性を顧みて幾何種数が4である場合に注力する.射影平面の分岐被覆の特異点を解消することによって,正規標準曲面の具体例を構成する.併せて,標準曲面の標準変換から誘導される3次元射影空間の自己双有理変換を考察する.また,平面曲線束に対するスロープ不等式や2次元特異点論を援用して,7次以上の正規標準曲面が存在しないことの証明に迫る.幾何種数が5以上の場合には,考察の対象を幾何種数の3倍マイナス6が次数の曲面に限定する.標準像の2次包を通じて曲面に誘導される代数曲線束に現れる特異ファイバーを完全に記述する.また,標準因子の自己交点数の上限を確立する.

Outline of Final Research Achievements

A minimal surface of general type whose canonical map is birational onto the image is called a canonical surface. Such surfaces with geometric genus 4 have a long history since Enriques' book. It has not been recognized the existence of normal ones except in the trivial case of quintic surfaces, before my work on normal canonical surfaces. In this research, I tried to construct new examples of normal canonical sextic surfaces whose volume is either 10 or 11, by deforming double coverings of rational surfaces. However, I failed to show the surfaces thus obtained is actually canonical.

Academic Significance and Societal Importance of the Research Achievements

期待される最終的な結論は得られなかったものの,一般型2次元正規特異点の数値的な不変量による分類や2重被覆で構成した曲面,とくに超楕円的な曲線束をもつ曲面の変形については新たな知見が得られた.また,幾何種数が大きい場合の正規標準曲面の研究により,種数3の非超楕円的ファイバー芽についての認識がいっそう深くなった.本研究を通じて,幾何種数4の場合には,次数が7以上の正規標準曲面は存在しないという予想に至った.こういった未解決問題の提示は,当該分野の研究進展にひとつの道筋を示すものである.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (2 results)

All 2020 2019

All Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Book (1 results)

  • [Presentation] Sextics and surfaces of general type2019

    • Author(s)
      今野一宏
    • Organizer
      Degenerations, Algebraic surfaces and related topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] Theory of Algebraic Surfaces2020

    • Author(s)
      Kunihiko Kodaira (translated by Kazuhiro Konno)
    • Total Pages
      88
    • Publisher
      Springer
    • ISBN
      9789811573798
    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi