• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of error terms in analytic number theory

Research Project

Project/Area Number 19K03449
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionYamaguchi University

Principal Investigator

Minamide Makoto  山口大学, 大学院創成科学研究科, 准教授 (80596552)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords解析数論的誤差項 / 二乗平均 / 様々な約数関数 / メビウス関数 / リーマンゼータ関数 / ハーディー関数 / 微分 / 二重ゼータ関数 / 約数関数 / 数論的関数 / メビウス関数の一般化 / 互いに素な最大約数 / 平均値 / 誤差項 / ラマヌジャンカスプ形式
Outline of Research at the Start

解析数論的誤差項について研究を行う。ハーディー関数は一つの重要な研究対象であり、その研究の中にはホールによるハーディー関数の導関数の二乗平均値定理がある。その誤差項の改良について、ホールが言及しており、その問題に取り組む。また、スリヤナラーヤナが考えた数論的関数についての平均に現れる誤差項の振動性などは盛んに研究されていたが、この研究ではそれを発展させて、べき乗平均の誤差項の振動性を研究する。また、これらに関連する問題の誤差項についても同時に考察したい。

Outline of Final Research Achievements

In 1999, Hall studied the mean square of the derivatives of Hardy's Z-function, and suggested to improve the result. It was a main purpose of our project. Yoshio Tanigawa and I succeeded to show the O-estimate as Hall' suggestion. On double zeta function, an estimate of the order of function was suggested by Isao Kiuchi and Y. Tanigawa, 2006. Debika Banerjee, Y. Tanigawa and I attempted to prove the conjecture and we obtained it. Moreover, we improved a result on the mean square of double zeta function by I. Kiuchi and I. Joshi and Vaidya studied the error term in the mean of the greatest divisor of n which is coprime to fixed k. Jun Furuya, Miyu Nakano, and I considered the error term in the mean square of the function. In the case of k=p (any prime), we obtained the limsup and liminf of the error term. As a related problem, for any square-free integer k, Tadaaki Igawa, M. Nakano and I obtained an asymptotic formula of the mean of the error term.

Academic Significance and Societal Importance of the Research Achievements

およそ20年, 多重ゼータ関数の研究は日本を中心として発展し続けている. この様な状況において, 当初予定になかった, 二重ゼータ関数の評価や二乗平均について, 知られている結果の改良を得られたことは学術的にも社会的にも意義があったと思う. また, Hall のハーディー関数の微分の二乗平均の結果を改良できたことは, リーマンゼータ関数の理論に寄与したと思う. 他に, インドで盛んに研究されていたある種の約数関数についての研究について, 今回, 二乗平均に関する結果が得られたことは意義があると思う.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (17 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (3 results) Journal Article (8 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 8 results) Presentation (6 results)

  • [Int'l Joint Research] IIIT(インド)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] IIIT(Delhi)(インド)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] IIIT(Delhi)(インド)

    • Related Report
      2019 Research-status Report
  • [Journal Article] The Pillai-Chowla method for an error term in the mean square of δk(n)2021

    • Author(s)
      T. Igawa, T.M. Minamide, M. Nakano
    • Journal Title

      Nepali Math Sci. Report

      Volume: 38

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A note on the mean square of the greatest divisor of n which is coprime to a fixed integer k2021

    • Author(s)
      J. Furuya, T.M. Minamide, M. Nakano
    • Journal Title

      Indian J. Pure Appl. Math.

      Volume: 52

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A note on the mean square of the greatest divisor of n which is coprime to a fixed integer k2021

    • Author(s)
      J. Furuya, T.M. Minamide, M. Nakano
    • Journal Title

      Indian J. Pure Appl. Math.

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Mean square of double zeta-function2020

    • Author(s)
      D. Banerjee, T.M. Minamide, Y. Tanigawa
    • Journal Title

      Tokyo J. Math.

      Volume: 未定 Issue: -1 Pages: 83-101

    • DOI

      10.3836/tjm/1502179322

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Mean square of the derivatives of Hardy's Z-function2020

    • Author(s)
      T.Makoto Minamide, Yoshio Tanigawa
    • Journal Title

      J.Math.Anal.Appl.

      Volume: 485 Issue: 1 Pages: 123772-123772

    • DOI

      10.1016/j.jmaa.2019.123772

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Bounds of double zeta-functions and their applications2020

    • Author(s)
      Debika Banerjee, T.Makoto Minamide, Yoshio Tanigawa
    • Journal Title

      Pacific J. Math.

      Volume: 304 Pages: 15-41

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Mean square of double zeta-function2020

    • Author(s)
      Debika Banerjee, T.Makoto Minamide, Yoshio Tanigawa
    • Journal Title

      Tokyo J. Math.

      Volume: 0

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Titchmarsh's method for the approximate functional equations for \zeta'(s)^2, \zeta(s)\zeta''(s) and \zeta'(s)\zeta''(s)2018

    • Author(s)
      Jun Furuya, Makoto Minamide, Yoshio Tanigawa
    • Journal Title

      Canadian J. Math.

      Volume: 印刷中 Issue: 6 Pages: 1465-1493

    • DOI

      10.4153/cjm-2018-004-9

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 合同約数和の平均に対する誤差項の平均について2021

    • Author(s)
      南出真・矢代好克・谷川好男
    • Organizer
      日本数学会・秋季総合分科会
    • Related Report
      2021 Annual Research Report
  • [Presentation] On an error term for the mean square of \delta_{k}(n)2021

    • Author(s)
      中野実優, 井川祥彰, 南出真
    • Organizer
      日本数学会・年会 (慶応大学)
    • Related Report
      2020 Research-status Report
  • [Presentation] On partial sum of Apostol's M{\" o}bius function2020

    • Author(s)
      Debika Banerjee, 藤澤雄介, 南出真, 谷川好男
    • Organizer
      日本数学会・秋季総合分科会(熊本大学)
    • Related Report
      2020 Research-status Report
  • [Presentation] 法mの約数問題と整数の表現への応用について2020

    • Author(s)
      谷川好男, 出崎千晶, 南出真, 矢代好克
    • Organizer
      日本数学会 中国・四国支部例会(岡山理科大, 加計研修センター)
    • Related Report
      2019 Research-status Report
  • [Presentation] kと互いに素な最大約数の二乗平均の誤差項について2020

    • Author(s)
      中野実優, 古屋淳, 南出真
    • Organizer
      日本数学会 中国・四国支部例会(岡山理科大, 加計研修センター)
    • Related Report
      2019 Research-status Report
  • [Presentation] ハーディー関数の導関数の二乗平均について2019

    • Author(s)
      南出真, 谷川好男
    • Organizer
      日本数学会 秋季総合分科会(金沢大学)
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi