• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies of K3 surfaces and rational surfaces through symmetry

Research Project

Project/Area Number 19K03454
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokai University

Principal Investigator

Taki Shingo  東海大学, 理学部, 准教授 (30609714)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
KeywordsK3曲面 / 自己同型 / 商曲面 / Galois点 / 非シンプレクティック自己同型 / 非純 / 商特異点 / 非シンプレクティック / 有理曲面 / 特異点 / モジュライ空間
Outline of Research at the Start

主にK3曲面や(対数的)有理曲面が研究対象である.K3曲面上の非シンプレクティックな対称性の分類や,K3曲面の商曲面として得られる有理曲面の特異性や対称性に関する考察を行う.
幾何的対象を考察する際,それが持つ対称性に注目することで新たな世界が見えてくることがある.例えば,一般の三角形に対称性は無いが,二等辺三角形や正三角形のような特殊な三角形は「左右対称」や「120度の回転」など特別な対称性を持つ.二等辺三角形や正三角形の特殊性はこのような対称性の存在によって特徴付けられているとも言える.
本研究ではこのような視点の下,対称性を通して上記の代数多様体を調べる.

Outline of Final Research Achievements

It is a fundamental problem to study automorphisms of algebraic varieties. In particular, studies on automorphisms of K3 surfaces are one of the important problems. By the definition of K3 surfaces, these have a nowhere vanishing holomorphic 2-form. A finite group which acts on K3 surfaces as automorphisms is called "symplectic" or "non-symplectic" if it acts trivially or non-trivially on a nowhere vanishing holomorphic 2-form, respectively.
In this research project, study finite non-symplectic automorphisms on K3 surfaces from the following three view points.
(1) A study on quotient surfaces of K3 surfaces with an automorphism of maximum order. (2) A study on non-purely non-symplectic automorphisms on K3 surfaces. (3) A study on characterization of quartic surfaces with Galois points as K3 surface

Academic Significance and Societal Importance of the Research Achievements

幾何的対象を考察する際,それが持つ対称性がその特殊性を表していることがある.例えば,一般の三角形に対称性は無いが,二等辺三角形や正三角形のような特殊な三角形は「左右対称」や「120度の回転」など対称性を持つ.
本研究ではこのような視点の下,K3曲面とよばれる代数多様体の対称性を調べ,「K3曲面上のある種の特別な現象の背景には特殊な対称性が隠されている」ということを示した.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (10 results)

All 2023 2021 2020 2019

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (5 results) (of which Invited: 2 results) Funded Workshop (1 results)

  • [Journal Article] SINGULARITIES OF QUOTIENT SURFACES OF K3 SURFACES2023

    • Author(s)
      TAKI SHINGO、Tokai University,
    • Journal Title

      Mathematical Reports

      Volume: 25(75) Issue: 3 Pages: 413-423

    • DOI

      10.59277/mrar.2023.25.75.3.413

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Non-purely non-symplectic automorphisms of odd order on $K3$ surfaces2023

    • Author(s)
      Taki Shingo
    • Journal Title

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      Volume: 99 Issue: 7

    • DOI

      10.3792/pjaa.99.009

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Non-purely non-symplectic automorphisms of order 6 on $K3$ surfaces2021

    • Author(s)
      Shin-yashiki Nirai、Taki Shingo
    • Journal Title

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      Volume: 97 Issue: 8 Pages: 61-66

    • DOI

      10.3792/pjaa.97.012

    • NAID

      40022720659

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Automorphisms of K3 surfaces and their applications2020

    • Author(s)
      Taki, Shingo
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: 78 Pages: 179-198

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] K3曲面とGalois点2023

    • Author(s)
      瀧 真語
    • Organizer
      第30回代数曲面ワークショップ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Galois点を持つ4次曲面とEisenstein K3曲面2023

    • Author(s)
      瀧 真語
    • Organizer
      第21回代数曲線論シンポジウム
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 有限自己同型を持つK3曲面について2019

    • Author(s)
      瀧 真語
    • Organizer
      早稲田整数論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Automorphisms of high order on K3 surfaces2019

    • Author(s)
      Shingo Taki
    • Organizer
      Degenerations, algebraic surfaces and related topics
    • Related Report
      2019 Research-status Report
  • [Presentation] K3 surfaces of type 19 and 202019

    • Author(s)
      瀧 真語
    • Organizer
      湯布院代数幾何学ワークショップ
    • Related Report
      2019 Research-status Report
  • [Funded Workshop] K3, Enriques Surfaces and Related Topics2023

    • Related Report
      2022 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi