• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of value distribution of Gauss maps and its applications to global property of immersed surfaces in space forms

Research Project

Project/Area Number 19K03463
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionKanazawa University

Principal Investigator

Kawakami Yu  金沢大学, 数物科学系, 准教授 (60532356)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords幾何学 / 解析学 / 曲面論 / 値分布論 / ガウス写像 / 極小曲面 / 平均曲率一定曲面 / 解析的延長 / 完全分岐値数 / 除外値 / 解析的完備性 / 除外値数 / Gauss写像 / Heinz型評価 / Bernsteinの定理 / カテノイド / 解析的完備 / Lorentz-Minkowski空間 / ワイエルシュトラス型表現公式 / ベルンシュタイン型定理
Outline of Research at the Start

本研究の目的は,空間内の曲面の大域的性質をガウス写像の性質から導く理論を確立することである.この目的の達成のため,本研究では主に,ガウス写像の値分布論的性質の幾何学的解釈を与え,それをもとに体系的な理論の形成を目指す「ガウス写像の値分布論的性質の研究」と,空間形の曲面の様々なクラスにおいて「ガウス写像」にあたるものを発見して,ベルンシュタイン型定理や剱持・ワイエルシュトラス型表現公式といった大域的性質が成り立つかどうかを調べる「ワイエルシュトラス型表現公式の研究」の2つの研究課題に取り組む.

Outline of Final Research Achievements

We provide a unified description of Heinz-type mean curvature estimates under an assumption on the gradient bound for space-like graphs and time-like graphs in the Lorentz-Minkowski space, As a corollary, we show a Bernstein-type theorem for entire space-like constant mean curvature graphs. Moreover, we show that a notion of "analytic completeness" of the image of a real analytic map implies the map admits no analytic completeness. We also a useful extension for that notion of analytic completeness by defining arc-properness of continuous maps. As an application, we judge the analytic completeness of a certain class of constant mean curvature surfaces or their analytic extensions in the de Sitter 3-space.

Academic Significance and Societal Importance of the Research Achievements

曲率の条件を持つ空間内の曲面は,現実社会の物理的現象としてあらわれるものの数学的モデルとなっていることが多い.このことから,曲率の条件を持つ空間内の曲面の性質を調べる研究で得られた成果は,数学にとどまらず,理工学のさまざまな分野の研究に応用されている.本課題の手法は,そのような曲面の性質をガウス写像という視点で調べるものである.研究成果は,曲率を条件に持つ空間内の曲面の実現性の問題の理解を深めるものであり,幾何学及び解析学の研究の発展に意義があると考えられる.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2022 2021 2020 Other

All Int'l Joint Research (8 results) Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (12 results) (of which Int'l Joint Research: 1 results,  Invited: 9 results)

  • [Int'l Joint Research] Korea university(韓国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Hanoi National University of Education(ベトナム)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Korea university(韓国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Hanoi National University of Education(ベトナム)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Korea university(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Hanoi National University of Education(ベトナム)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 高麗大学(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Hanoi National University of Education(ベトナム)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Analytic extensions of constant mean curvature one geometric catenoids in de Sitter 3-space2022

    • Author(s)
      Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, Kotaro Yamada and Seong-Deog Yang
    • Journal Title

      Differential Geometry and Its Applications

      Volume: 84 Pages: 101924-101924

    • DOI

      10.1016/j.difgeo.2022.101924

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Heinz-type mean curvature estimates in Lorentz-Minkowski space2020

    • Author(s)
      Honda Atsufumi、Kawakami Yu、Koiso Miyuki、Tori Syunsuke
    • Journal Title

      Revista Matematica Complutense

      Volume: - Issue: 3 Pages: 641-651

    • DOI

      10.1007/s13163-020-00373-9

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Value distribution for the Gauss maps of various classes of surfaces2020

    • Author(s)
      Kawakami Yu
    • Journal Title

      Sugaku Expositions

      Volume: 33 Issue: 2 Pages: 223-237

    • DOI

      10.1090/suga/454

    • NAID

      130007557779

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Heinz-type mean curvature estimates and its applications2022

    • Author(s)
      Yu Kawakami
    • Organizer
      RIMS workshop, Application of Harmonic Maps and Higgs Bundles to Differential Geometry
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Recent advances in value distribution of the Gauss map of minimal surfaces2022

    • Author(s)
      川上 裕
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 有限全曲率完備極小曲面のガウス写像の完全分岐値数について2022

    • Author(s)
      Pham Hoang Ha,川上 裕,渡邉 元嗣
    • Organizer
      2022年度日本数学会秋季総合分科会一般講演
    • Related Report
      2022 Annual Research Report
  • [Presentation] Recent development in value distribution theory of the Gauss map of complete minimal surfaces2022

    • Author(s)
      川上 裕
    • Organizer
      第28回複素幾何シンポジウム(金沢)2022
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Recent advances in value distribution of the Gauss map of a complete minimal surface2022

    • Author(s)
      Yu Kawakami
    • Organizer
      Workshop on Surface Theory -UY60-
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Recent advances in value distribution of the Gauss map of complete minimal surfaces2022

    • Author(s)
      Yu Kawakami, Mototusgu Watanabe
    • Organizer
      Workshop on Differential Geometry and Geometric Analysis
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Bernstein型問題の研究の最近の進展について2021

    • Author(s)
      川上裕
    • Organizer
      東京理科大学理工学部数学科談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Lorentz-Minkowski空間における平均曲率に関するHeniz型評価について2021

    • Author(s)
      川上裕
    • Organizer
      九州大学幾何学セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Recent advances in Bernstein-type problems2021

    • Author(s)
      川上裕
    • Organizer
      第87回金沢解析セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Bernstein型問題の歴史と最近の発展2021

    • Author(s)
      川上裕
    • Organizer
      福岡大学幾何学セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Bernstein型問題の最近の進展について2021

    • Author(s)
      川上裕
    • Organizer
      大阪市立大学 幾何学講演会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Lorentz-Minkowski空間におけるHeinz型の平均曲率の評価について2020

    • Author(s)
      川上裕、本田淳史、小磯深幸、通峻祐
    • Organizer
      日本数学会秋季総合分科会幾何学分科会一般講演
    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi