• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on antipodal sets of symmetric spaces and related geometry

Research Project

Project/Area Number 19K03478
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionTokyo University of Science

Principal Investigator

Tanaka Makiko  東京理科大学, 創域理工学部数理科学科, 教授 (20255623)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords対称空間 / リー群 / 対蹠集合 / 対蹠部分群 / 極地 / コンパクト対称空間 / コンパクトLie群 / 被覆準同型写像 / 非連結リー群
Outline of Research at the Start

コンパクト対称空間の対蹠集合がコンパクト対称空間のどのような幾何構造を反映しているのかについて研究する。まず極大対蹠集合を分類し、その分類結果を利用して対蹠集合の構造や性質を解明する。そのため本研究課題の研究目的の一つは、コンパクト対称空間の極大対蹠集合の合同類の分類を完成させることである。方針は、対称空間をリー群に然るべく埋め込み、リー群の極大対蹠部分群の分類を利用する。もう一つは、得られた分類結果を応用して対蹠集合の性質や構造を解明することである。モース関数との関連を見ることに取り組み、位相幾何学や有限幾何学、有限群論、組み合わせ論への応用も視野に入れて広い意味での幾何学の研究に取り組む。

Outline of Final Research Achievements

We classified maximal antipodal sets of some classical compact symmetric spaces M and those of the quotient spaces of M up to congruence. Using the realization of each compact symmetric space as a polar of a certain compact Lie group G, we gave explicit descriptions of the representatives of each congruent class of the maximal antipodal sets using matrices. Furthermore, we determined the maximum of the cardinalities of maximal antipodal sets and maximal antipodal sets whose cardinalities attain the maximum. Since M is realized as a polar of a certain disconnected compact Lie group if M is an outer compact symmetric space, we studied polars of a disconnected compact Lie group and clarified their fundamental properties.

Academic Significance and Societal Importance of the Research Achievements

対称空間は各点で点対称が定義できる空間で、様々なよい性質をもつことが知られている。コンパクト対称空間の対蹠集合はそのコンパクト対称空間の性質を反映した有限部分集合であり、極大対蹠集合の分類や位数の最大値の決定は、対蹠集合の構造や性質を解明するための手掛かりになる。極大対蹠集合の分類の研究を通じて、非連結コンパクトLie群の極地の研究やコンパクトLie群の奇数被覆度の被覆準同型写像による対蹠集合の対応の研究などへの発展があった。対蹠集合は、その有限性から、対称空間論と有限群論や組合せ論などとを関連付けるものであり、研究成果により対称空間の他分野への応用が期待できることから意義があると考えられる。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (35 results)

All 2024 2023 2022 2021 2020 2019 Other

All Journal Article (9 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results) Presentation (21 results) (of which Int'l Joint Research: 8 results,  Invited: 16 results) Remarks (4 results) Funded Workshop (1 results)

  • [Journal Article] Antipodal sets and polars of symmetric spaces2023

    • Author(s)
      Makiko Sumi Tanaka
    • Journal Title

      Proceedings of the 24th International Workshop on Differential Geometry of Hermitian Symmetric Spaces & Ricci Flow

      Volume: 24 Pages: 29-43

    • Related Report
      2023 Annual Research Report
  • [Journal Article] 古典型コンパクト対称空間の極大対蹠集合 III2023

    • Author(s)
      田中 真紀子, 田崎 博之
    • Journal Title

      日本数学会2023年度秋季総合分科会 幾何学分科会講演アブストラクト

      Volume: - Pages: 19-20

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Polars of disconnected compact Lie groups2022

    • Author(s)
      Makiko Sumi Tanaka and Hiroyuki Tasaki
    • Journal Title

      Contemporary Mathematics, Differential Geometry and Global Analysis: In Honor of Tadashi Nagano

      Volume: 777 Pages: 211-225

    • DOI

      10.1090/conm/777/15632

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Maximal antipodal sets related to G_22022

    • Author(s)
      Makiko Sumi Tanaka, Hiroyuki Tasaki and Osami Yasukura
    • Journal Title

      PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

      Volume: 150 Pages: 4533-4542

    • DOI

      10.1090/proc/15989

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Addendum to: Maximal antipodal sets of compact classical symmetric spaces and their cardinalities I2022

    • Author(s)
      Makiko Sumi Tanaka and Hiroyuki Tasaki
    • Journal Title

      Differential Geometry and its Applications

      Volume: 80 Pages: 101815-101815

    • DOI

      10.1016/j.difgeo.2021.101815

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Maximal antipodal sets of compact classical symmetric spaces and their cardinalities I2020

    • Author(s)
      Makiko Sumi Tanaka and Hiroyuki Tasaki
    • Journal Title

      Differential Geometry and its Applications

      Volume: 73 Pages: 101682-101682

    • DOI

      10.1016/j.difgeo.2020.101682

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Extrinsic symmetric subspaces2020

    • Author(s)
      Jost Eschenburg and Makiko Sumi Tanaka
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 57 Pages: 655-661

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Maximal antipodal sets of G_2 and G_2/SO(4) and related geometry2019

    • Author(s)
      Makiko Sumi Tanaka, Hiroyuki Tasaki and Osami Yasukura
    • Journal Title

      Proceedings of the 22nd International Workshop on Differential Geometry of Submanifolds in Symmetric Spaces

      Volume: 22 Pages: 153-159

    • Related Report
      2019 Research-status Report
  • [Journal Article] Isometries of extrinsic symmetric spaces2019

    • Author(s)
      Jost-Hinrich Eschenburg, Peter Quast and Makiko Sumi Tanaka
    • Journal Title

      Asian Journal of Mathematics

      Volume: 23 Issue: 3 Pages: 439-454

    • DOI

      10.4310/ajm.2019.v23.n3.a4

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] コンパクト対称空間の対蹠集合2024

    • Author(s)
      田中 真紀子
    • Organizer
      半田山・幾何・代数セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 古典型コンパクト対称空間の極大対蹠集合 III2023

    • Author(s)
      田中 真紀子, 田崎 博之
    • Organizer
      日本数学会2023年度秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Antipodal sets of compact symmetric spaces2023

    • Author(s)
      Makiko Sumi Tanaka
    • Organizer
      Representations of Symmetric Spaces
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 古典型コンパクト対称空間の極大対蹠集合とその分類2023

    • Author(s)
      田中 真紀子
    • Organizer
      部分多様体幾何とリー群作用2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Classification of maximal antipodal sets of compact symmetric spaces2023

    • Author(s)
      Makiko Sumi Tanaka
    • Organizer
      The 24th International Workshop on Differential Geometry of Hermitian Symmetric Spaces and Ricci Flow
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Hermann作用2022

    • Author(s)
      田崎 博之
    • Organizer
      第3回水戸幾何小研究集会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Antipodal sets of compact symmetric spaces2022

    • Author(s)
      Makiko Sumi Tanaka
    • Organizer
      2023 OCAMI-RIRCM International Workshop on Geometry and Symmetric Spaces
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] コンパクト対称空間の極大対蹠集合2021

    • Author(s)
      田中真紀子
    • Organizer
      部分多様体論と関連する幾何構造研究の深化と融合
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 古典型コンパクト対称空間の極大対蹠集合 II2021

    • Author(s)
      田中真紀子、田崎博之
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] Maximal tori of extrinsic symmetric spaces2021

    • Author(s)
      田中真紀子
    • Organizer
      対称空間と群作用の幾何学
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Antipodal sets of compact symmetric spaces and polars of compact Lie groups2021

    • Author(s)
      Makiko Sumi Tanaka
    • Organizer
      Submanifolds of Symmetric Spaces and Their Time Evolutions
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非連結コンパクトLie群の極地2021

    • Author(s)
      田中真紀子、田崎博之
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 非連結コンパクトLie群の極地2020

    • Author(s)
      田中真紀子
    • Organizer
      カンドルと対称空間
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 非連結コンパクトLie群の極地2020

    • Author(s)
      田中真紀子
    • Organizer
      筑波大学微分幾何学セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Maximal antipodal sets related to G_22020

    • Author(s)
      Makiko Sumi Tanaka, Hiroyuki Tasaki and Osami Yasukura
    • Organizer
      Joint Mathematics Meetings 2020
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] グラスマン多様体とその商空間の極大対蹠集合2019

    • Author(s)
      田中真紀子
    • Organizer
      第2回水戸幾何小研究集会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Maximal antipodal sets of G_2 and G_2/SO(4) and related geometry2019

    • Author(s)
      Makiko Sumi Tanaka, Hiroyuki Tasaki and Osami Yasukura
    • Organizer
      The 22nd International Workshop on Differential Geometry of Submanifolds in Symmetric Spaces
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Maximal antipodal sets of classical compact symmetric spaces2019

    • Author(s)
      Makiko Sumi Tanaka
    • Organizer
      Differential Geometry and its Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 例外型コンパクト対称空間G_2/SO(4)の幾何2019

    • Author(s)
      田中真紀子、田崎博之、保倉理美
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Maximal antipodal sets of classical symmetric spaces2019

    • Author(s)
      Makiko Sumi Tanaka
    • Organizer
      The 2nd Taiwan-Japan Joint Conference on Differential Geometry
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 古典型コンパクト対称空間の極大対蹠集合2019

    • Author(s)
      田中真紀子
    • Organizer
      筑波大学微分幾何セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] 東京理科大学研究者情報データベース RIDAI

    • URL

      https://ridai.admin.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=pos&kin=ken&diu=2cad

    • Related Report
      2023 Annual Research Report
  • [Remarks] 研究者情報データベースRIDAI

    • URL

      https://ridai.admin.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=pos&kin=ken&diu=2cad

    • Related Report
      2022 Research-status Report
  • [Remarks] 研究者情報テータベースRIDAI

    • URL

      https://www.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=nam&kin=ken&diu=2cad

    • Related Report
      2021 Research-status Report
  • [Remarks] RIDAI

    • URL

      https://www.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=nam&kin=ken&diu=2cad&pri=jp

    • Related Report
      2020 Research-status Report
  • [Funded Workshop] 部分多様体幾何とリー群作用20212022

    • Related Report
      2021 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi