• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of the complexity of invariant sets appearing in chaotic dynamical systems

Research Project

Project/Area Number 19K03485
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Kato Hisao  筑波大学, 数理物質系(名誉教授), 名誉教授 (70152733)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsカオス力学系 / 位相次元 / エントロピー / 埋蔵定理 / 位相力学系 / 幾何学的トポロジー / カオス / Takensの埋込み定理 / 位相エントロピー / フラクタル / 連続体 / 記号力学系
Outline of Research at the Start

本研究では、コンパクト距離空間とその上の連続写像という非常に一般的な研究対象を、幾何学的トポロジー(特に、連続体論)、位相空間論、力学系理論およびエルゴート論を駆使して総合的に研究する。位相力学系、連続体論および位相空間論の方法論を融合して、可分距離空間上の力学系の原理的な構造の解明に役立てたい。特に位相空間論からの研究という基本原理に立ち返った研究方法は、本研究の大きな特色でもある。また本研究では幾何学的トポロジーの見地からも、特に連続体論から力学系のカオスを研究していく。こうした力学的構造と幾何構造を理論的かつ統一的に解明できることは本研究の大きなメリットと考えている。

Outline of Final Research Achievements

Takens' embedding theorem on manifolds is known to allow the reconstruction of two-sided dynamical systems from data and time series analysis. Takens' theorem is the most important in experimental science. It guarantees the possibility of reconstructing mathematical models from experiments, but its scope is limited to smooth dynamical systems on manifolds. Our theorem is a broad theorem that can be applied to one-sided dynamical systems in more complex spaces. The theorem theoretically and mathematically proves that (orbital) embedding of time series data in delay coordinates is the key to unraveling one-sided dynamical systems without any restrictions.

Academic Significance and Societal Importance of the Research Achievements


多様体上のTakensの埋込み定理が知られている。本研究で、”滑らかさを仮定しない一般的な空間と連続写像”にまで Takensの定理が拡張できることを証明した。つまり、 Takens の埋め込み定理は「topology category における再構成定理」まで拡張できる。Takens の定理は、実験データから数学モデルの再構成可能を保証する実験科学における貴重な定理であるが、多様体上の滑らかな力学系に限られていた。我々の定理は現実の世界の現象の再構築理論にとって重要である。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021 2020 2019

All Journal Article (8 results) (of which Peer Reviewed: 5 results) Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results)

  • [Journal Article] Takens-type reconstruction theorems of one-sided dynamical systems2023

    • Author(s)
      Kato Hisao
    • Journal Title

      Nonlinearity

      Volume: 36 Issue: 3 Pages: 1571-1592

    • DOI

      10.1088/1361-6544/acb396

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Dynamical properties of doubly 0-dimensional maps2022

    • Author(s)
      H. Kato
    • Journal Title

      数理解析研究所講究録 H. Kato 2209 5.発行年 Dynamical properties of doubly 0-dimensional maps

      Volume: 2029 Pages: 92-99

    • Related Report
      2022 Research-status Report
  • [Journal Article] Dynamical properties of doubly 0-dimensional maps2022

    • Author(s)
      H. Kato
    • Journal Title

      数理解析研究所講究録

      Volume: 2209 Pages: 92-99

    • Related Report
      2021 Research-status Report
  • [Journal Article] Jaworski-type embedding theorems of one-sided dynamical systems2021

    • Author(s)
      H. Kato
    • Journal Title

      Fund. Math.

      Volume: 253 Pages: 205-218

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Reconstructions of One-sided Dynamical Systems from the Analysis of Experimental Time Series2021

    • Author(s)
      H. Kato
    • Journal Title

      数理解析研究所講究録

      Volume: 2179 Pages: 75-88

    • NAID

      120007141836

    • Related Report
      2021 Research-status Report
  • [Journal Article] Finite-to-one zero-dimensional covers of dynamical systems2020

    • Author(s)
      H. Kato and M. Matsumoto
    • Journal Title

      J. Math. Soc. Japan

      Volume: 72 Issue: 3 Pages: 819-845

    • DOI

      10.2969/jmsj/82128212

    • NAID

      130007879411

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Topological entropy and IE-tuples of indecomposable continua2019

    • Author(s)
      H. Kato
    • Journal Title

      Fund. Math.

      Volume: 247 Issue: 2 Pages: 131-149

    • DOI

      10.4064/fm401-12-2018

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Monotone maps of G-like continua with positive topological entropy yield indecomposability2019

    • Author(s)
      H. Kato
    • Journal Title

      Proc. Amer. Math. Soc.

      Volume: 147 Issue: 10 Pages: 4363-4370

    • DOI

      10.1090/proc/14602

    • NAID

      120007133049

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Reconstructions of one-sided topological dynamics from multivariate time series data2023

    • Author(s)
      Kato Hisao
    • Organizer
      RIMS共同研究集会 「力学系理論の展開と応用」
    • Related Report
      2023 Annual Research Report
  • [Presentation] RECONSTRUCTIONS OF DYNAMICS USING MULTIVARIATE OBSERVATIONS2023

    • Author(s)
      Kato Hisao
    • Organizer
      RIMS共同研究集会 「一般トポロジーとその関連分野の進捗」
    • Related Report
      2023 Annual Research Report
  • [Presentation] Dynamical systems of doubly 0-dimensional maps2021

    • Author(s)
      H. Kato
    • Organizer
      RIMS共同研究
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Takens-type reconstruction theorems of non-invertible dynamical systems on compact metric spaces2020

    • Author(s)
      H. Kato
    • Organizer
      研究集会「葉層構造の幾何学とその応用」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Reconstructions of One-sided Dynamical Systems from the Analysis of Experimental Time Series2020

    • Author(s)
      H. Kato
    • Organizer
      RIMS 共同研究「一般位相幾何学とその関連分野の進展」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Jaworski-Takens-Gutman Type Embedding Theorems of One-sided Dynamical Systems2019

    • Author(s)
      H. Kato
    • Organizer
      Conference on Geometric Topology and Related Topics, Mazatlan, Mexico
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Topological entropy and IE-tuples of G-like indecomposable continua2019

    • Author(s)
      H. Kato
    • Organizer
      Third Pan-Pacific International Conference on Topology and Applications, 四川大学, 成都, 中国
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 位相エントロピーと空間の複雑性2019

    • Author(s)
      H. Kato
    • Organizer
      早稲田大学理工・トポロジーセミナー
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi