Project/Area Number |
19K03490
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Kyoto University |
Principal Investigator |
伊藤 哲也 京都大学, 理学研究科, 教授 (00710790)
|
Co-Investigator(Kenkyū-buntansha) |
大槻 知忠 京都大学, 数理解析研究所, 教授 (50223871)
|
Project Period (FY) |
2019-04-01 – 2025-03-31
|
Project Status |
Granted (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 正組みひも / 結び目 / 低次元トポロジー / 正結び目 / 矯飾的手術 / 矯飾的交差 / 組みひも群 / オープンブック分解 / 接触幾何 / 量子トポロジー |
Outline of Research at the Start |
量子トポロジー・接触トポロジーともに現在活発に研究され、進展が著しい3次元のトポロジーの研究分野であるが、それぞれの分野の課題や未解決問題や目標は大きく異なり、二つの研究分野間の交流は活発とは言えない。近年、二つの分野に相互関連や応用があることを示唆する結果が得られており、二つの分野に密接な関連があることが期待される。このような現状を踏まえて、接触幾何の情報を量子不変量あるいはそれに関連した不変量から得ること、また逆に量子不変量に関連する情報を接触幾何の手法や情報から得ることを研究し、二つのトポロジーの分野の統合を目指す。
|
Outline of Annual Research Achievements |
正組みひもの閉包として現れる絡み目を正組みひも結び目と呼ぶ。正組みひも絡み目は量子トポロジーにおいて、特別な性質を持つ重要な対象である。また、一方で正組みひも結び目は自然に標準的な接触三次元球面内のルジャンドル結び目としてみなせることなど、接触幾何の観点からみても重要な対象である。そのような背景から、本年度は正組みひも絡み目の性質についての研究を継続して行った。 結び目理論において、結び目の不変量や各種性質がサテライト構成、特にケーブル化に対しどのようにふるまうか、ということは基本的な問題であり、正組みひも絡み目のサテライト構成についての考察を行った。正組みひも結び目については、適切な正組みひもパターンによるサテライト構成が正組みひも絡み目となることは容易にわかる。組みひも群についての理論や手法を駆使することで、組みひもが全ねじれを含むという仮定の下で、その逆が成り立つことを示し、サテライト結び目となるような全ねじれを含む正組みひも結び目の特徴づけを与えた。 この系として、自明な結び目や三葉結び目といった結び目たちが適切なケーブル化操作が(全ねじれを含む)正組みひも結び目となる結び目として特徴づけられることを示した。 また、関連した研究として正二橋結び目についての鏡像的矯飾的手術の研究を行い、正二橋結び目についての鏡像的矯飾的手術は知られているもの((2,k) トーラス結び目の鏡像的矯飾的手術)に限ることの証明を与えた。また、デーン手術により自明化される結び目群の元の構造についての研究や群の一般化ねじれ元のなども行った。これらの研究は、直接研究課題に現れているものではないが、研究課題の研究に触発されて行った研究である。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
全ねじれを含む正組みひも絡み目の性質については十分に満足いく成果が得られた。今年度の研究成果は組みひも群の手法、とくに組みひも群の代数的側面(Garside理論)・力学系的側面(Nielsen-Thurston分類)・幾何的側面(Braid foliation理論)のすべてを組み合わせたものであり、組みひも群の理論の集大成といえる。
一方で、今年度の成果は純粋な位相幾何的なものであり、研究課題であった量子トポロジー・接触トポロジーとの関連を見出すということについては、当初の目標については未達成であると認めざる得ない。
|
Strategy for Future Research Activity |
本研究に際しては、これまでの研究を通して正組みひも絡み目の量子不変量の性質について、いくつかの結果を得られている。今年度の研究により、正組みひも結び目の位相的な性質についての理解が進んだことから、最後に正組みひも結び目について接触幾何の側面からの研究や理解を深めることで、これまでの研究成果と合わせて量子トポロジーと接触トポロジーの何らかの面白い対応や関連を見出すことを目標としたい。
とくに、一般の正組みひも結び目に比べ、全ねじれを含む正組みひも結び目はさらに強い性質、特に接触幾何の観点においてもさらに良い性質を持つことが期待できるため、全ねじれを含む正組みひも結び目について、接触幾何との関連を主眼に詳細に調べていく。
|