• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of discrete curves and discrete surfaces

Research Project

Project/Area Number 19K03507
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionKurume Institute of Technology

Principal Investigator

Matsuura Nozomu  久留米工業大学, 工学部, 教授 (00389339)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords離散Kirchhoff弾性棒 / 離散弾性曲線 / 離散単振り子方程式 / 共形平坦超曲面 / 主曲率曲面 / 単振り子 / 離散弾性棒 / 弾性棒 / 弾性曲線 / 明示公式 / 楕円テータ関数 / 離散曲線 / 離散曲面 / 差分幾何
Outline of Research at the Start

本研究課題は、離散曲線や離散曲面の構成方法を差分幾何の観点から研究し、またその一方で、これまでの研究成果を基盤にして界面現象に代表される非可積分系の離散化に取り組むことを目的とする。特にテータ関数やパフィアンを用いて離散弾性曲線や離散アフィン球面の明示公式を見出すこと、および、曲線短縮流の離散化を手掛かりにして界面の双曲型の発展問題について離散モデルを構築することを目指す。

Outline of Final Research Achievements

From the viewpoint of discrete integrable geometry, we derived an explicit formula for the discrete Kirchhoff elastic rods in 3-dimensional Euclidean space. From the viewpoint of integrable geometry, we constructed an example of the curvature surfaces in generic conformally flat hypersurfaces in 4-dimensional Euclidean space and investigated its global behaviour.

Academic Significance and Societal Importance of the Research Achievements

コンピュータグラフィクス分野ではしばしば一次元弾性体の数値シミュレーションが行われるが、本研究で求めた離散キルヒホフ弾性棒の明示公式は、そのような数値実験の理論的基盤としての役割を果たしうる。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (9 results)

All 2023 2021 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] 離散Kirchhoff弾性棒の明示公式2023

    • Author(s)
      川久保哲, 松浦望
    • Journal Title

      京都大学数理解析研究所講究録別冊

      Volume: B91

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Representation formula for discrete indefinite affine spheres2020

    • Author(s)
      Kobayashi Shimpei、Matsuura Nozomu
    • Journal Title

      Differential Geometry and its Applications

      Volume: 69 Pages: 101592-101592

    • DOI

      10.1016/j.difgeo.2020.101592

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Genericで共形平坦な超曲面内の曲率曲面の拡張と近似2023

    • Author(s)
      陶山芳彦, 松浦望
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 離散キルヒホフ弾性棒の明示公式2021

    • Author(s)
      松浦望
    • Organizer
      伊都CREST ED3GEセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] 離散キルヒホフ弾性棒の明示公式2021

    • Author(s)
      松浦望
    • Organizer
      RIMS共同研究(公開型)「可積分系数理の諸相」
    • Related Report
      2021 Research-status Report
  • [Presentation] 離散キルヒホフ弾性棒の明示公式2021

    • Author(s)
      川久保哲、松浦望
    • Organizer
      日本応用数理学会2021年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 単振子の離散化2021

    • Author(s)
      久野叶登、松浦望
    • Organizer
      研究集会「非線形波動と可積分系」
    • Related Report
      2021 Research-status Report
  • [Presentation] 平面離散弾性曲線の明示公式2020

    • Author(s)
      松浦望
    • Organizer
      日本数学会2020年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Discrete curve shortening flow2019

    • Author(s)
      Nozomu Matsuura
    • Organizer
      International Congress on Industrial and Applied Mathematics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi