• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Probabilistic study on uniform distribution theory

Research Project

Project/Area Number 19K03518
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKobe University

Principal Investigator

Fukuyama Katusi  神戸大学, 理学研究科, 教授 (60218956)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords等比数列 / 一様分布論 / 差異量 / 重複大数の法則 / 重複対数の法則
Outline of Research at the Start

一様分布論の基礎理論について研究する。特に差異量を用いた解析による手段で主に以下のテーマについて研究する。
1. 数列の一様分布性の安定性、すなわち摂動に関する頑健性の研究。
2. 実幾何数列、複素幾何数列、四元幾何数列、多次元の行列の巾で定まる幾何数列など多次元幾何数列の一様分布論の研究。
3. 数列の分布のPoisson 性とGauss 性の問題について、間隙列の一様分布性の観点から研究に取り組み、その多次元相関の消滅と収束速度の精密な研究。

Outline of Final Research Achievements

We studied the asymptotic behaviour of the discrepancies of geometric progression. If we perturb geometric progression with almost every initial term by using irrational rotation, the dependence as the stationary sequence seems to be eliminated by viewing the law of the iterated logarithm for discrepancies. We can also see the dependence not necessary vanishes by other perturbation, and see that any dependence smaller that original one can be realized by using some appropriately chosen perturbation. As to the subsequence of geometric progressoin, sometimes the dependence seems to be vanished, but we can take subsequence of it to make it recover the dependence of original sequence in the sense of the law of the iterated logarithm for discrepancies.

Academic Significance and Societal Importance of the Research Achievements

等比数列の差異量の漸近挙動については判明していないことが大半であったが、測度論的手法を用いることによりほとんどすべての初期値に関して理論を展開することが可能になってきた。特に部分列の挙動や摂動の影響など等比数列から派生する様々な問題に関して知見が付け加わったことにより、一様分布論の測度論的研究の進展に寄与したものである。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (2 results)

All 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results)

  • [Journal Article] Metric Discrepancy Results for Subsequences of Geometric Progressions2021

    • Author(s)
      Fukuyama K.、Suzaki K.
    • Journal Title

      Lobachevskii Journal of Mathematics

      Volume: 42 Issue: 13 Pages: 3123-3126

    • DOI

      10.1134/s1995080222010085

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] The law of the iterated logarithm for the discrepancy of perturbed geometric progressions2021

    • Author(s)
      Fukuyama K.
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 164 Issue: 1 Pages: 157-177

    • DOI

      10.1007/s10474-020-01120-8

    • Related Report
      2021 Research-status Report
    • Peer Reviewed

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi