• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fundamental theory of reaction-diffusion equations with variable coefficients---a panorama in Turing's sight

Research Project

Project/Area Number 19K03557
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTohoku University

Principal Investigator

Takagi Izumi  東北大学, 理学研究科, 名誉教授 (40154744)

Co-Investigator(Kenkyū-buntansha) 鈴木 香奈子  茨城大学, 理工学研究科(理学野), 准教授 (10451519)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords反応拡散系 / パターン形成 / 変数係数偏微分方程式 / 不連続定常解 / 受体-配体模型 / 反応拡散形 / 変数係数微分方程式 / 配体ー受体モデル / 配体-受体モデル / 反応拡散方程式系 / 変数係数 / 受容体―結合基反応 / 反応拡散方程式 / 一次パターンと二次パターン / 空間的非一様性
Outline of Research at the Start

生物の発生過程では,ほぼ一様な状態から出発し,様々な形が次々と作られていく.Turing はその機序を拡散性物質の相互作用によって生じる「一様な状態の不安定化」に基づく空間的構造の自発的形成と考えた.本研究は,それを一歩進めて,変数係数の反応拡散系が「所与の空間的非一様性を乗り越えて,新たな空間的構造を構築する」ことを明らかにする.これによって,発生過程の複雑な形態形成の各段階で,反応拡散系の生成する先駆パターンが実際の生物の形づくりを制御していくという Turing によって構想された包括的理論が完成する.

Outline of Final Research Achievements

Turing proposed that, in reaction-diffusion systems with constant coefficients, spatially non-uniform structures spontaneously formed due to diffusion-driven instability (when two chemicals with different diffusivities react, a spatially uniform state can become unstable). This study has demonstrated that even in reaction-diffusion systems with variable coefficients, to which this principle does not apply, a new stable steady state exists that is separate from the stable steady state inherent to the system, for a class of model systems in developmental biology.

Academic Significance and Societal Importance of the Research Achievements

自然界に広く見られるパターンが形成される機構を理解する一つが反応拡散系によるモデル化である.この非線型偏微分方程式系の数学解析は,この半世紀のうちに大いに進展して,病状の診断に応用されるまでになっている.しかし,時間とともに複雑さを増していくようなパターン形成に関しては系統的な研究はまだ本格化していない.本研究は,その方向での基礎理論を構築する目的で,係数が空間変数に依存するような簡単な反応拡散系について,定常解の構成方法を開発した.今後の理論の発展の礎となることを期待している.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (24 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (7 results) Journal Article (7 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (10 results) (of which Int'l Joint Research: 7 results,  Invited: 9 results)

  • [Int'l Joint Research] 清華大学(中国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] 清華大学/中国人民大学(中国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] ハイデルベルグ大学(ドイツ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] 清華大学/中国人民大学(中国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] ハイデルベルグ大学(ドイツ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] 中国人民大学/中山大学(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ハイデルベルグ大学(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Steady States with Jump Discontinuity in a Receptor-Based Model with Hysteresis in Higher-Dimensional Domains2024

    • Author(s)
      Akagi Goro、Takagi Izumi、Zhang Conghui
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: 56 Issue: 2 Pages: 1996-2033

    • DOI

      10.1137/22m1509059

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Stable discontinuous stationary solutions to reaction-diffusion-ODE systems2023

    • Author(s)
      Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch and Kanako Suzuki
    • Journal Title

      Communications in Partial Differential Equations

      Volume: 48 Issue: 3 Pages: 478-510

    • DOI

      10.1080/03605302.2023.2190525

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Instability of all regular stationary solutions to reaction-diffusion-ODE systems2022

    • Author(s)
      Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki
    • Journal Title

      Journal of Differential Equations

      Volume: 337 Pages: 460-482

    • DOI

      10.1016/j.jde.2022.08.007

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Pattern formation in a reaction-diffusion-ODE model with hysteresis in spatially heterogeneous environments2021

    • Author(s)
      Izumi Takagi and Conghui Zhang
    • Journal Title

      Journal of Differential Equations

      Volume: 280 Pages: 928-966

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media2021

    • Author(s)
      Izumi Takagi and Conghui Zhang
    • Journal Title

      Discrete and Continuous Dynamical Systems

      Volume: 41 Issue: 7 Pages: 3109-3140

    • DOI

      10.3934/dcds.2020400

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Criterion toward understanding non-constant solutions to <i>p</i>-Laplace Neumann boundary value problem2020

    • Author(s)
      K. Suzuki
    • Journal Title

      Mathematical Journal of Ibaraki University

      Volume: 52 Issue: 0 Pages: 1-13

    • DOI

      10.5036/mjiu.52.1

    • NAID

      130007940502

    • ISSN
      1343-3636, 1883-4353
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hysteresis-driven pattern formation in reaction-diffusion-ODE systems2020

    • Author(s)
      Alexandra Koethe, Anna Marciniak-Czochra, Izumi Takagi
    • Journal Title

      Discrete and Continuous Dynamical Systems, Set. A

      Volume: 40 Issue: 6 Pages: 3495-3627

    • DOI

      10.3934/dcds.2020170

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] What is pattern?2024

    • Author(s)
      Izumi Takagi
    • Organizer
      Turing Symposium on Morphogenesis, 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Stability of stationary solutions to reaction-diffusion-ODE systems2024

    • Author(s)
      Kanako Suzuki
    • Organizer
      Turing symposium on Morphogenesis, 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Turing pattern vs Turing project2023

    • Author(s)
      Izumi Takagi
    • Organizer
      Geometric Aspects of Partial Differential Equations
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stability and instability of stationary solutions to reaction-diffusion-ODE systems2023

    • Author(s)
      Kanako Suzuki
    • Organizer
      Reaction-Diffusion Equations and Related Stochastic Topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Travelling wave solutions of a reaction-diffusion-ODE system with S-hysteresis2022

    • Author(s)
      Izumi Takagi
    • Organizer
      International Conference on Nonlinear Analysis and Nonlinear Partial Differential Equations
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stable discontinuous stationary solutions of a reaction-diffusion equation coupled with an ODE2022

    • Author(s)
      Izumi Takagi
    • Organizer
      Long Feng Forum, Partial Differential Equations: Interaction of Analysis, Geometry and Topology
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 受体ー配体反応に基づくパターン形成モデルの高次元定常解の存在と安定性2022

    • Author(s)
      高木泉
    • Organizer
      北海道大学MMCセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Patterning and spatial heterogeneity2021

    • Author(s)
      高木泉
    • Organizer
      大連理工大学数学科学研究院線上報告会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Higher dimensional stationary solutions of a receptor-based model for pattern formation in developmental biology2021

    • Author(s)
      高木泉
    • Organizer
      南開大学陳省身数学研究所線上報告会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Spatial patterns of some reaction-diffusion-ODE systems2019

    • Author(s)
      Kanako Suzuki
    • Organizer
      Modeling biological phenomena by parabolic PDEs and their analysis
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi